Peroulis / Abu Khater | Tunable Evanescent-Mode Filters | Buch | 978-1-394-21680-2 | sack.de

Buch, Englisch, 320 Seiten, Format (B × H): 152 mm x 229 mm, Gewicht: 594 g

Peroulis / Abu Khater

Tunable Evanescent-Mode Filters

Principles, Implementation, and Applications
1. Auflage 2025
ISBN: 978-1-394-21680-2
Verlag: Wiley

Principles, Implementation, and Applications

Buch, Englisch, 320 Seiten, Format (B × H): 152 mm x 229 mm, Gewicht: 594 g

ISBN: 978-1-394-21680-2
Verlag: Wiley


Comprehensive resource presenting tunable evanescent-mode filters design principles, implementation technologies, and applications, with hardware demonstrations and illustrations to support concepts

Covering all recent advancements in the field, Tunable Evanescent-Mode Filters discusses fundamentals and applications in tunable evanescent-mode filters with concepts supported by hardware demonstrations to help the reader design experiments, a variety of detailed illustrations to aid in reader comprehension, and worked-out examples to help connect theory to practice.

The book is divided into three parts. The first part introduces associated physics, providing background information on topics such as filter anatomy, coupling matrix and routing diagrams, evanescent-mode resonators, and more. The second part covers implementation, describing topics like printed circuit boards, silicon microfabrication, and injection molding. The last part covers applications and discusses a broad range of topics including absorptive bandstop filters, bandwidth and passband control, high-order and fractional-order evanescent-mode filters, advanced evanescent-mode filter structures, and phase-locked loop and balanced-balanced tunable filtering.

Written by two highly qualified academics with significant research experience in the field, Tunable Evanescent-Mode Filters also explores topics such as: - Filter examples, including Chebyshev bandpass filters and Butterworth bandstop filters, and coupling techniques, including external and inter-resonator coupling
- The constant bandwidth coupling concept, covering BW variation versus T-line length and tuning range, as well as phase variation
- Bandpass-to-Bandstop reconfigurable filters, covering the switching coupling structure
- Single-ended (SE) and balanced (BAL) diplexers, covering the dual-mode diplexing concept and its architecture and resonant frequency misalignment
- Monitoring and control of silicone-based filters, covering spiral inductors and circuit optimization

Tunable Evanescent-Mode Filters is a one-of-a-kind and completely up-to-date reference on the subject for both beginners in tunable RF systems looking for learning the fundamentals, as well as advanced researchers who are interested in the most effective techniques and latest developments in the field.

Peroulis / Abu Khater Tunable Evanescent-Mode Filters jetzt bestellen!

Weitere Infos & Material


About the Authors xiii

Preface xiv

Acknowledgments xvi

List of Abbreviations xviii

About the Companion Website xx

Part I Principles 1

1 Background 3

1.1 Introduction 3

1.1.1 Filters Necessity 3

1.1.2 Alternative Filtering Methods 4

1.2 Filter Anatomy and Representation 5

1.2.1 The Basic Coupling Matrix (M Matrix) 5

1.2.2 Coupling-Routing Diagrams 8

1.2.3 Additions to the Coupling Matrix for Synthesis of Advanced and Practical Filter Responses 10

1.2.3.1 Positive and Negative Coupling Values 10

1.2.3.2 Finite Resonator Quality Factors 11

1.2.3.3 Resonator Frequency Tuning 13

1.2.3.4 Non-Resonating Nodes 13

1.2.3.5 Complex Impedance Loads 16

1.3 Tunable Resonators in Filters 20

1.3.1 Planar Tunable Resonators 21

1.3.2 Ferrimagnetic Tunable Resonators 22

1.3.3 Evanescent-Mode 3-D Tunable Resonators 22

2 Evanescent-Mode Resonators 25

2.1 Physical Structure 25

2.2 Analysis 26

2.2.1 Coaxial Cable Approximation 26

2.2.1.1 Unloaded Quality Factor 28

2.2.2 Tapered Resonator Model 30

2.2.2.1 Frequency Tuning Ratio 34

2.2.3 Tuning Range and Quality Factor Co-optimization 37

2.3 Coupling Techniques 38

2.3.1 External Coupling 38

2.3.2 Inter-Resonator Coupling 43

2.4 Coupling Values Polarity 44

2.4.1 External Coupling Polarity 44

2.4.2 Inter-Resonator Coupling Polarity 45

2.5 Advanced Evanescent-Mode Structures 48

2.5.1 Dual-Mode Resonators 48

2.5.2 Fractional Mode Resonators 49

2.6 Filter Examples 51

2.6.1 Chebyshev Bandpass Filter 51

2.6.2 Butterworth Bandstop Filter 53

Part II Implementation 55

3 Printed Circuit Board Technology 57

3.1 Evanescent-Mode Resonator Structure 57

3.1.1 Practical Considerations 58

3.2 Tunable Membrane 60

3.2.1 Piezoelectric Disk Tuners 60

3.2.2 Contactless Mechanical Actuators 61

4 Silicon Microfabrication 65

4.1 Generic Structure 65

4.2 MEMS Tuner Design 66

4.3 Microfabrication Process 68

4.3.1 MEMS Tuner Microfabrication 68

4.3.2 Evanescent-Mode Resonator Microfabrication 69

4.3.3 Bias Electrode Microfabrication 69

4.3.4 Filter Assembly 70

4.4 Mechanical Model and Power Handling 72

5 Injection Molding 77

5.1 Manufacturing Technology 77

5.1.1 Device Concept 77

5.1.2 Injection Molding Technology 78

5.1.3 Material Selection 80

5.1.4 Design for Moldability 81

5.2 Resonator and Filter RF Design 82

5.2.1 Resonator 82

5.2.2 Filter 83

5.3 Fabrication and Measurements 85

5.3.1 Resonator 85

5.3.2 Filter Performance Measurements 87

5.3.3 Power Handling 90

5.4 Discussion 93

5.5 Conclusion 95

5.6 How to Choose the Right Manufacturing Technology 95

5.7 How to Choose the Right Actuator for the Filter 96

Part III Applications 99

6 Absorptive Bandstop Filters 101

6.1 Design Principles of Absorptive Filters 101

6.1.1 Analysis of a Two-Pole Absorptive Bandstop Filter 101

6.1.2 W-Band Absorptive Bandstop Filter 104

6.1.2.1 Filter Design 104

6.1.2.2 Fabrication and Measurements 107

6.2 Triplet Quasi-absorptive Topology 109

6.2.1 Quasi-absorptive Filter Design and Implementation 111

6.2.1.1 Measured Results 114

7 Bandwidth and Passband Control 115

7.1 Bandwidth Control for Bandpass Filters 115

7.1.1 Filter Design 116

7.1.1.1 Bandwidth Variation 116

7.1.1.2 Quality Factor Impact 118

7.1.1.3 Impedance Matching 119

7.1.1.4 Simulated Results 120

7.1.2 Filter Implementation 122

7.2 BSF Bandwidth Control 126

7.2.1 Constant Bandwidth Coupling Concept 128

7.2.1.1 BW Variation Versus T-Line Length and Tuning Range 131

7.2.1.2 Phase Variation 134

7.2.2 Constant Bandwidth Filter Design 136

7.2.2.1 External Coupling 136

7.2.2.2 External Coupling Structures: Polarity Design 138

7.2.2.3 Inter-Resonator Coupling 140

7.2.3 Fabrication and Measurements 141

7.2.3.1 Constant FBW Filter 142

7.2.3.2 Constant ABW Filter 143

7.2.3.3 Four-Pole Filter 144

8 High-Order and Fractional-Order Evanescent-Mode Filters 147

8.1 High-Order Evanescent-Mode Filters 147

8.1.1 Independently Tunable Dual-Mode Evanescent-Mode Filter 147

8.1.1.1 Resonator Design 148

8.1.1.2 Filter Design 150

8.1.1.3 Experimental Validation 151

8.1.2 High Selectivity Dual-Mode Filters 152

8.1.2.1 Resonator Design 154

8.1.2.2 Constant Absolute Bandwidth BPF Filter 157

8.1.2.3 Filter A: Implementation and Validation 160

8.1.2.4 Filter B: Implementation and Validation 161

8.1.2.5 Filter C: Implementation and Validation 162

8.1.2.6 Filter D: Implementation and Validation 162

8.1.3 Four-Wedge Evanescent-Mode Resonator 165

8.1.3.1 Bandpass Filter Design 165

8.1.3.2 Design Example 167

8.2 Tunable Half-Mode SIW Filter 170

9 Advanced Evanescent-Mode Filter Structures 175

9.1 Bandpass-to-bandstop Reconfigurable Filter 175

9.1.1 Bandpass-to-bandstop Filter Theory 176

9.1.1.1 Coupling Structure to Switch M 01 and M 03 Simultaneously 177

9.1.2 Bandpass-to-bandstop Reconfigurable Filter Design 179

9.1.3 Measured Results 180

9.2 Field-programmable Filter Array 184

9.2.1 Positive-to-negative Coupling Structure 184

9.2.2 Response Enhancements Enabled By Positive-to-negative Inter-Resonator Coupling 185

9.2.2.1 Zero Net Coupling State Enhancement Using Destructive Interference 185

9.2.2.2 Local Stopband Attenuation Enhancement Technique 187

9.2.3 Resonator Array Design and Fabrication 188

9.2.4 Measured Results 189

10 Passive Applications 195

10.1 Impedance Tuner 195

10.1.1 Design and Fabrication 195

10.1.2 Measured Results 197

10.2 Single-ended (SE) and Balanced (BAL) Diplexers 198

10.2.1 Dual-Mode Diplexing Concept 198

10.2.1.1 Diplexing Architecture 198

10.2.1.2 Resonant Frequency Misalignment 199

10.2.1.3 Inter-Resonator Coupling 201

10.2.2 SE–SE Diplexer Implementation and Measurements 201

10.2.2.1 External Coupling 201

10.2.2.2 Measured Results 201

10.2.3 SE–BAL Diplexer Implementation and Measurements 202

10.2.3.1 External Coupling 202

10.2.3.2 Measured Results 203

10.2.4 BAL–BAL Diplexer Implementation and Measurements 205

10.2.4.1 External Coupling 205

10.2.4.2 Measured Results 205

10.3 Tunable Filtering Rat-race Couplers Based on Half- and Full-mode Evanescent-mode Resonators 207

10.3.1 Design 207

10.3.2 Full-mode Rat-race Coupler 209

10.3.2.1 Experimental Validation 209

10.3.3 Half-mode Rat-race Coupler 210

10.3.3.1 Half-mode Structure 210

10.3.3.2 Experimental Validation 211

11 Active Applications 215

11.1 Co-Design of Power Amplifiers and High-Q Filters 215

11.1.1 Filter Design 216

11.1.2 Transistor Characterization 217

11.1.3 Matching Filter Design 217

11.1.3.1 Fundamental and Harmonic Matchings 219

11.1.4 PA Design 220

11.1.5 Experimental Results 220

11.1.6 Co-Design of PA and Three-Pole High-Q Tunable Filter 222

11.2 Phase-Locked Loop 224

11.2.1 Frequency Synthesizer Architecture and Phase Noise Model 224

11.2.2 Circuit Design and Optimizations 226

11.2.2.1 Evanescent-Mode Cavity Resonator 226

11.2.2.2 Voltage-Controlled Oscillator Design 226

11.2.2.3 Phase-Locked Loop Design 227

11.2.2.4 Measured Results 229

11.3 Balanced–Balanced Tunable Filtering LNA 231

11.3.1 Cavity Resonator-LNA Co-Design 231

11.3.1.1 Evanescent-Mode Resonators 232

11.3.1.2 Lna 232

11.3.2 Implementation and Measured Results 233

12 Monitoring and Control 235

12.1 Monitoring and Control of PCB-based Resonators: Diplexer Example 235

12.1.1 System Architecture 235

12.1.1.1 Diplexer 236

12.1.1.2 Resonators Monitoring and Control 237

12.1.1.3 Spectrum Sensing 240

12.1.2 Control Loop Analysis 242

12.1.3 Design Details 242

12.1.3.1 Diplexer Structure 242

12.1.3.2 Oscillator and Frequency Counter 243

12.1.3.3 Control Unit and Charge Pump 246

12.1.4 Implementation and Measurements 247

12.1.4.1 Implementation 247

12.1.4.2 Monitoring Performance 248

12.1.4.3 RF Performance 250

12.1.4.4 Spectrum-aware Measurements 254

12.2 Monitoring and Control of Silicon-based Filters 254

12.2.1 Monitoring Concepts and Optimizations 255

12.2.1.1 Inductive Proximity Sensing 255

12.2.1.2 Circuit Optimization 257

12.2.1.3 Spiral Inductor 261

12.2.2 Control System Design 261

12.2.3 Testbed Filter Design 263

12.2.4 Implementation and Measurements 263

12.2.4.1 Fabrication 263

12.2.4.2 Sensing Feedback 265

12.2.4.3 Filter Monitoring and Control 266

12.3 Monitoring and Control Applications: Temperature Compensation 267

12.3.1 Temperature Control 268

12.3.1.1 Temperature Compensation System Implementation 268

12.3.1.2 Room Temperature Filter Performance 268

12.3.1.3 Temperature Compensation Performance 268

References 275

Index 289


Dimitrios Peroulis is the Senior Vice President for Purdue University Online and the Reilly Professor of Electrical and Computer Engineering at Purdue University, USA. He is an IEEE and IET Fellow and has co-authored over 450 journal and conference papers.

Mohammad Abu Khater was a research scientist at Purdue University working on adaptive RF front-ends and their applications. Currently, he is the founder and CEO of Philowave.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.