Perkins | Interactions Between Process Design and Process Control | E-Book | sack.de
E-Book

E-Book, Englisch, 241 Seiten, Web PDF

Reihe: IFAC Postprint Volume

Perkins Interactions Between Process Design and Process Control


1. Auflage 2014
ISBN: 978-1-4832-9790-3
Verlag: Elsevier Science & Techn.
Format: PDF
Kopierschutz: 1 - PDF Watermark

E-Book, Englisch, 241 Seiten, Web PDF

Reihe: IFAC Postprint Volume

ISBN: 978-1-4832-9790-3
Verlag: Elsevier Science & Techn.
Format: PDF
Kopierschutz: 1 - PDF Watermark



The volume provides the systems engineer working in process control, with state-of-the-art research papers and practical applications, which will be a valuable reference source.

Perkins Interactions Between Process Design and Process Control jetzt bestellen!

Autoren/Hrsg.


Weitere Infos & Material


1;Front Cover;1
2;Interactions between Process Design and Process Control
;2
3;Copyright Page;3
4;Table of Contents;6
5;FOREWORD;10
6;Chapter 1. Effect of Design on the Controllability of Chemical Plants;12
6.1;1 Introduction;12
6.2;2 Process Synthesis and Controllability;14
6.3;3 Controllability evaluation based on steady-state models;15
6.4;4 Controllability evaluation based on linear dynamic models;15
6.5;5 Controllability evaluation based on nonlinear dynamic models;18
6.6;6 Synthesis;19
6.7;7 Conclusions;20
6.8;References;21
7;Chapter 2. EARLY INTEGRATION OF PROCESS AND CONTROL DESIGN;26
7.1;SUMMARY;26
7.2;1. INTRODUCTION;26
7.3;2. STEPS IN INTEGRATED PROCESS AND CONTROL DESIGN;26
7.4;3. CHOICE OF CONTROLLED AND CORRECTING VARIABLES;27
7.5;4. STABILITY AND CONTROLLABILITY ANALYSIS;28
7.6;5. OPTIMUM OPERATING POINTS;29
7.7;6. CONTROL SYSTEM DESIGN;29
7.8;7. ASSESSING CONTROL PERFORMANCE;30
7.9;8. PROS AND CONS OF WORKING IN THE FREQUENCY DOMAIN;30
7.10;9. CONCLUSIONS;31
7.11;ACKNOWLEDGMENT;31
7.12;REFERENCES;31
8;Chapter 3. CONTROLLABILITY MEASURES FOR DISTURBANCE REJECTION;32
8.1;1 Introduction;32
8.2;2 Preliminaries;32
8.3;3 Existing controllability measures;33
8.4;4 Scaling;34
8.5;5 Results on disturbance measures;34
8.6;6 Example: LV-Distillation.;36
8.7;7 Discussion and Conclusion;37
8.8;References;38
9;Chapter 4. Design and Operability of an Energy Integrated Distillation Column;40
9.1;Introduction;40
9.2;2. Operability issues of integrated plants.;41
9.3;3. Plant Description;41
9.4;4. Stability and operability of the plant;42
9.5;5. Modelling of the energy integrated plant;43
9.6;6. Steady state operation of plant;43
9.7;7. Controllability properties of the plant;44
9.8;8. Experimental results;47
9.9;Conclusion;48
9.10;Literature;48
10;Chapter 5. DESIGN MODIFICATIONS AND PROPER DISTILLATION CONTROL;50
10.1;INTRODUCTION;50
10.2;CONTROL STRUCTURES;50
10.3;IMPLICATION OF THE EIGENSTRUCTURE CONCEPT;51
10.4;ALTERNATIVE & HEAT INTEGRATED DISTILLATION CONFIGURATIONS;52
10.5;PROCEDURE FOR CONTROL SYSTEM DESIGN;54
10.6;CONCLUSIONS;54
10.7;REFERENCES;54
11;Chapter 6. Controllability Analysis for Unstable Processes;58
11.1;1 Introduction;58
11.2;2 Controllability measures;58
11.3;3 Examples.;61
11.4;References;63
12;Chapter 7. CONTROL SYSTEM DESIGN IN DISTILLATION PROCESSES AND ITS DEPENDENCE OF THE ORIGINAL PROCESS DESIGN;64
12.1;1 Introduction;64
12.2;2 System Description;65
12.3;3 Discussion;67
12.4;References;72
13;Chapter 8. Design and Control of Recycle Processes in Ternary Systems with Consecutive Reactions;74
13.1;Introduction;74
13.2;Process Studied;75
13.3;Dynamics and Control;76
13.4;A Proposed Generic Rule for Liquid Recycle Systems;78
13.5;Conclusion;79
13.6;Literature Cited;79
13.7;Nomenclature;79
14;Chapter 9. SIMULTANEOUS PROCESS AND SYSTEM CONTROL DESIGN: AN ACTUAL INDUSTRIAL CASE;84
14.1;INTRODUCTION;85
14.2;MODELLING;86
14.3;RESULTS AND DISCUSSION;86
14.4;LITERATURE REFERENCES;92
15;Chapter 10. Concurrent Integrated Design of Process and Operating System;96
15.1;1 Introduction;96
15.2;2 Classifying Modes of Process Operation;96
15.3;3 Defining the Full Operating Regime;97
15.4;4 Functional Structure of Operating Modes;97
15.5;5 Development of Operating Modes;99
15.6;6 Negotiation between Process and Operating System Design;101
15.7;7 Conclusions;101
15.8;References;101
16;Chapter 11. INCORPORATING OPERABILITY MEASURES INTO TEE PROCESS SYNTHESIS STAGE OF DESIGN;104
16.1;PROCESS SYNTHESIS PROCEDURE;104
16.2;SYNTHESIS OF A STYRENE MONOMER FLOWSHEET;106
16.3;CONCLUSIONS;108
16.4;REFERENCES;108
17;Chapter 12. A Multiobjective Optimization Approach For Analyzing The Interaction of Design and Control;110
17.1;1. Process Synthesis and Controllability;110
17.2;2. Multiobjective Optimization Framework;111
17.3;3. Proposed Procedure For Design and Control;113
17.4;4. Two-Objective Example Problem;113
18;Chapter 13. Integrated Design of Effluent Treatment Systems;116
18.1;1 Summary;116
18.2;2 Introduction;116
18.3;3 Analysis of delay effects;116
18.4;4 Worst case design;118
18.5;5 An example from effluent treatment;119
18.6;6 Conclusions;121
18.7;References;121
19;Chapter 14. INTERACTIONS BETWEEN DESIGN AND OPERATION OF BATCH PLANTS;122
19.1;ABSTRACT;122
19.2;KEYWORDS;122
19.3;INTRODUCHON;122
19.4;DESIGN AND DYNAMICS - BATCH DISTILLATION;122
19.5;DESIGN AND SCHEDULING - MULTIPURPOSE BATCH PLANTS;124
19.6;DESIGN OF OPERATING PROCEDURES AND SEQUENTIAL CONTROLLERS;126
19.7;DISCUSSION AND CONCLUSIONS;130
19.8;ACKNOWLEDGEMENTS;130
19.9;REFERENCES;131
20;Chapter 15. A PROCEDURE FOR CONTROLLABILITY ANALYSIS;136
20.1;1 Introduction;136
20.2;2 Control objectives and limitations;136
20.3;3 Scaling of variables;137
20.4;4 Tools for controllability analysis;137
20.5;5 More detailed analysis.;140
20.6;6 Example: FCC;140
20.7;References;141
21;Chapter 16. Is the Relative Gain Array a Sensitivity Measure ?;142
21.1;I Introduction;142
21.2;II Notation and Preliminaries;143
21.3;III Main Results;144
21.4;IV Conclusion;146
21.5;Acknowlegement;146
21.6;References;146
22;Chapter 17. ROBUST CONTROL INDICATORS IN PROCESS DESIGN AND CONTROL;148
22.1;INTRODUCTION;148
22.2;FRAMEWORK FOR TRADE-OFF BETWEEN CRITERIA;148
22.3;ILLUSTRATIVE EXAMPLE;150
22.4;INTEGRATION OF PROCESS DESIGN AND CONTROL;151
22.5;REFERENCES;151
23;Chaper 18. EARLY STAGE PROCESS CONTROLLABILITY ASSESSMENT;154
23.1;1. INTRODUCTION;154
23.2;2. THE REQUIREMENTS OF A CONTROLLABILITY ASSESSMENT TOOL;154
23.3;3 REALISATION OF A PROCESS CONTROL TOOLBOX;155
23.4;4 APPLICATION TO A VINYL CHLORIDE PLANT;156
23.5;5 APPLICATION TO A POLYMERISATION REACTOR;157
23.6;6 SUMMARY;158
23.7;7 REFERENCES;158
24;Chapter 19. Inferential Control using Nonlinear Model-based Observer Control;160
24.1;1 Introduction;160
24.2;2 The Flash Separation Process;160
24.3;3 The Control Structure Assessment;161
24.4;4 Model-Based Observer Control;162
24.5;5 Inferential Control of the Flash Separation;163
24.6;6 Discussion and Conclusions;165
24.7;7 References;165
25;Chapter 20. CONTROL CONFIGURATION SELECTION FOR THE INFERENTIAL CONTROL OF A HIGH PURITY DISTILLATION COLUMN;166
25.1;INTRODUCTION;167
25.2;INDUSTRIAL DISTILLATION COLUMN;167
25.3;EIGENSTRUCTURE STUDIES;169
25.4;CONCLUSION;171
26;Chapter 21. THE MODEL PROJECTION PROBLEMS IN THE GLOBAL INSTRUMENTATION OF A PROCESS;176
26.1;1 INTRODUCTION: PROBLEM MOTIVATION;176
26.2;2 PROGENITOR MODELS AND PROBLEM STATEMENT;176
26.3;3 INTERNAL PROGENITOR MODELS AND THEIR PROPERTIES UNDER TOTAL LOSS OF SUBSYSTEM INPUTS, OUTPUTS;177
26.4;4 MODEL PROJECTION PROBLEMS ON EXTERNAL PROGENITOR MODELS;178
26.5;5 CONCLUSIONS;179
26.6;References;179
27;Chapter 22. COMPUTER-AIDED OPTIMAL DYNAMIC NETWORK DESIGN;180
27.1;ABSTRACT;180
27.2;INTRODUCnON;180
27.3;THE ALGORITHMS OF THE SOLUTION OF THE NETWORK DESIGN PROBLEMS;182
27.4;THE ARCHITECTURE OF THE AUTOMATIZED SYSTEM;184
27.5;THE INTERACTION BETWEEN PROCESS CONTROL AND PROCESS DESIGN;185
27.6;REFERENCES;185
28;Chapter 23. OPTIMAL DESIGN AND OPERATION OF COMPLEX BATCH DISTILLATION COLUMN;186
28.1;Introduction;186
28.2;Complex Batch Distillation Column;186
28.3;Optimal Design and Operation of Complex Column;187
28.4;Stripping Batch Distillation Column;188
28.5;Conclusion;191
28.6;Acknowledgment;191
29;Chaper 24. Dynamic Modeling in Design and Operation Safety Checking of Large Scale Pipeline Networks;192
29.1;Introduction;192
29.2;1) Process design and operation;192
29.3;2) Operability and controllability studies;194
29.4;3) Optimization of process design and operation - simulation runs under user defined logic;195
29.5;4) Design and control for inherent safety - leak detection;196
29.6;Conclusions;197
29.7;References;197
30;Chapter 25. COMPUTER-AIDED PROCESS DESIGN SYSTEM FOR PLANT OPERATION;198
30.1;1 INTRODUCTION;199
30.2;2. DESIGN ACTIVITIES FOR START-UP;199
30.3;3. CORRESPONDENCE BETWEEN TOPOLOGY AND START-UP OPERATION;200
30.4;4. PROCESS DESIGN SUPPORT SYSTEM FOR OPERATION;202
30.5;5. CONCLUSION;203
31;Chapter 26. COMPARISON OF SEVERAL STARTUP MODELS FOR BINARY AND TERNARY BATCH DISTILLATION WITH HOLDUPS;206
31.1;INTRODUCTION;206
31.2;STARTUP MODELS AND SIMULATION ASPECTS;207
31.3;SIMULATION RESULTS AND DISCUSSION;207
31.4;CONCLUSION;209
31.5;ACKNOWLEDGMENT;209
31.6;REFERENCE;209
32;Chapter 27. The Desiyn and Scheduling of Multipurpose Batch Plants;212
32.1;1 Introduction;212
32.2;2 Problem Definition and Formulation;213
32.3;3 An Example;215
32.4;4 Conclusions;216
32.5;References;217
33;Chapter 28. Supervisory Control of Parallel Processes in Batch Plants;218
33.1;Problem;218
33.2;Causal Models;218
33.3;Timed Models;219
33.4;Analysis of Timed Models;220
33.5;Application;222
33.6;Acknowledgement;223
33.7;References;223
34;Chapter 29. A Knowledge-Based Expert System for Hazard and Operability Studies;224
34.1;1. Introduction;224
34.2;2. Hazard and Operability (HAZOP) Study and Needs for Expert System;224
34.3;3. Knowledge Representation and System Implementation;225
34.4;4. Examples;227
34.5;5. Conclusion and Further Studies;229
34.6;References;229
35;Chapter 30. COMPUTER EMULATION OF HAZARD IDENTIFICATION;230
35.1;1. Introduction;230
35.2;2. Hazop Procedure;230
35.3;3. The HAZID Knowledge Based System;231
35.4;4. Discussion;234
35.5;5. Applications;234
35.6;6. Current status;235
35.7;7. Conclusion;235
35.8;Acknowledgments;235
35.9;References;235
36;Chapter 31. A Hierarchical Method for Line-by-Line Hazard and Operability Studies;236
36.1;Introduction: the Line-by-Line Hazard Study Method;236
36.2;Hierarchical Approach to Process Design Tasks;237
36.3;A Hierarchical Line-by-Line Hazop Case Study;238
36.4;The Process Example;238
36.5;Input - Output Block Flow Diagram;239
36.6;Input-Output BFD with Controls;239
36.7;Recycle BFD;240
36.8;Unintegrated Process Flowsheet;240
36.9;Conclusions;241
36.10;References;242
37;Chapter 32. Design of Flexible and Reliable Process Systems;244
37.1;1. INTRODUCTION;244
37.2;2. PROBLEM DEFINITION;244
37.3;3. FRAMEWORK;245
37.4;4. EXAMPLE;245
37.5;5. CONCLUSIONS;248
37.6;6. REFERENCES;248
38;APPENDIX;249



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.