Perillo / Wolanski / Cahoon | Coastal Wetlands | E-Book | sack.de
E-Book

E-Book, Englisch, 974 Seiten

Perillo / Wolanski / Cahoon Coastal Wetlands

An Integrated Ecosystem Approach
1. Auflage 2009
ISBN: 978-0-08-093213-2
Verlag: Elsevier Science & Techn.
Format: EPUB
Kopierschutz: 6 - ePub Watermark

An Integrated Ecosystem Approach

E-Book, Englisch, 974 Seiten

ISBN: 978-0-08-093213-2
Verlag: Elsevier Science & Techn.
Format: EPUB
Kopierschutz: 6 - ePub Watermark



Coastal wetlands are under a great deal of pressure from the dual forces of rising sea level and the intervention of human populations both along the estuary and in the river catchment. Direct impacts include the destruction or degradation of wetlands from land reclamation and infrastructures. Indirect impacts derive from the discharge of pollutants, changes in river flows and sediment supplies, land clearing, and dam operations. As sea level rises, coastal wetlands in most areas of the world migrate landward to occupy former uplands. The competition of these lands from human development is intensifying, making the landward migration impossible in many cases. This book provides an understanding of the functioning of coastal ecosystems and the ecological services that they provide, and suggestions for their management. In this book a CD is included containing color figures of wetlands and estuaries in different parts of the world.
* Includes a CD containing color figures of wetlands and estuaries in different parts of the world.

Perillo / Wolanski / Cahoon Coastal Wetlands jetzt bestellen!

Weitere Infos & Material


1;Front Cover;1
2;Coastal Wetlands: An Integrated Ecosystem Approach;4
3;Copyright Page;5
4;Table of Contents;6
5;Preface;20
6;List of Contributors;22
7;List of Reviewers;32
8;Chapter 1 Coastal Wetlands: A Synthesis;34
8.1;1 Introduction;34
8.2;2 A Synthesis of Coastal Wetlands Science;35
8.2.1;2.1 Geography;36
8.2.2;2.2 Geomorphology evolution under climate change;37
8.2.3;2.3 The influence of vegetation on the geomorphology evolution with climate change;39
8.2.4;2.4 The stabilizing role of vegetation;42
8.2.5;2.5 State change and coastal evolution;46
8.2.6;2.6 The role of physical disturbances;47
8.2.7;2.7 The role of herbivores;51
8.2.8;2.8 Observations across ecosystem types;54
8.2.9;2.9 The human impact;61
8.2.10;2.10 Modeling and predictions;64
8.2.11;2.11 Coastal wetland ecosystems as a component of estuaries;65
8.2.12;2.12 Coastal wetland socioeconomics;67
8.2.13;2.13 Coastal wetlands are essential for our quality of life;71
8.3;3 Lessons from the Chapters in this Book;76
8.3.1;3.1 Coastal wetlands as ecosystems;77
8.3.2;3.2 Physical processes;78
8.3.3;3.3 Tidal flats;80
8.3.4;3.4 Marshes and seagrasses;81
8.3.5;3.5 Mangroves;84
8.3.6;3.6 Coastal wetland restoration and management;86
8.3.7;3.7 Coastal wetland sustainability and landscape dynamics;89
8.4;References;90
9;Part I Coastal Wetlands as Ecosystems;96
9.1;Chapter 2 The Morphology and Development of Tropical Coastal Wetlands;98
9.1.1;1 Introduction;98
9.1.2;2 Mangrove and Associated Wetlands;99
9.1.3;3 Sedimentation and the Development of Wetlands;102
9.1.4;4 Sea-Level Controls on Wetland Development;104
9.1.5;5 Sea-Level Change and the Diversification of West Indian Mangroves;107
9.1.6;6 Sea-Level Change and the Evolution of Mangrove Habitats in the IWP;109
9.1.7;7 Impact of Future Climate and Sea-Level Change;113
9.1.8;8 Summary and Concluding Remarks;115
9.1.9;References;116
9.2;Chapter 3 Temperate Coastal Wetlands: Morphology, Sediment Processes, and Plant Communities;122
9.2.1;1 Introduction;122
9.2.2;2 Factors Controlling Sediment Dynamics;124
9.2.2.1;2.1 The "ramp” model of salt marsh accretion;125
9.2.2.2;2.2 The "creek" model of salt marsh accretion;126
9.2.2.3;2.3 Storms and salt marsh erosion;127
9.2.3;3 Factors Controlling Patterns of Vegetation;128
9.2.3.1;3.1 Zonation of vegetation;128
9.2.3.2;3.2 Ecological development;129
9.2.4;4 Geographic Variation;130
9.2.4.1;4.1 Northern Europe;130
9.2.4.2;4.2 Eastern North America;131
9.2.4.3;4.3 Western North America;136
9.2.4.4;4.4 Mediterranean;137
9.2.4.5;4.5 Eastern Asia;137
9.2.4.6;4.6 Australasia;138
9.2.4.7;4.7 South America;140
9.2.5;5 Human Impact and Climate Change;141
9.2.5.1;5.1 Human impact;141
9.2.5.2;5.2 Climate and sea-level change;143
9.2.6;6 Summary;144
9.2.7;References;145
9.3;Chapter 4 Polar Coastal Wetlands: Development, Structure, and Land use;152
9.3.1;1 Introduction;152
9.3.2;2 Geology/Geomorphology;154
9.3.3;3 Oceanography;157
9.3.4;4 Climate;158
9.3.5;5 Structure of Coastal Wetlands;160
9.3.6;6 Vegetation of Polar Coastal Wetlands;166
9.3.7;7 Fauna of Polar Coastal Wetlands;169
9.3.7.1;7.1 Invertebrate fauna;170
9.3.7.2;7.2 Vertebrate fauna using coastal wetlands;173
9.3.8;8 Environmental Hazards;180
9.3.9;9 Conclusions and Research Priorities;181
9.3.10;References;182
10;Part II Physical Processes;190
10.1;Chapter 5 Intertidal Eco-Geomorphological Dynamics and Hydrodynamic Circulation;192
10.1.1;1 Introduction;192
10.1.2;2 Intertidal Eco-Geomorphological Evolution;196
10.1.2.1;2.1 Poisson hydrodynamic model;197
10.1.2.2;2.2 Model of channel network early development;198
10.1.2.3;2.3 Model of marsh platform evolution;201
10.1.3;3 Results;204
10.1.4;4 Discussion;210
10.1.5;5 Conclusions;211
10.1.6;Acknowledgments;212
10.1.7;References;212
10.2;Chapter 6 Tidal Courses: Classification, Origin, and Functionality;218
10.2.1;1 Introduction;218
10.2.2;2 Proposed Tidal Course Classification;220
10.2.3;3 Geomorphology of Tidal Courses;222
10.2.4;4 Course Networks and Drainage Systems;229
10.2.5;5 Origin of Tidal Courses;231
10.2.6;6 Course Evolution;236
10.2.7;7 Summary;239
10.2.8;Acknowledgments;239
10.2.9;References;239
10.3;Chapter 7 Heat Energy Balance in Coastal Wetlands;244
10.3.1;1 Introduction;244
10.3.2;2 Mid-Latitudes;248
10.3.3;3 Low Latitudes;253
10.3.4;4 High Latitudes;255
10.3.5;5 Summary;258
10.3.6;Acknowledgments;259
10.3.7;References;259
10.4;Chapter 8 Hydrodynamics and Modeling of Water Flow in Mangrove Areas;264
10.4.1;1 Introduction;264
10.4.1.1;1.1 Peculiar hydrodynamics in mangrove area;266
10.4.1.2;1.2 Material dispersion;266
10.4.1.3;1.3 Holistic system;266
10.4.2;2 Physical Characteristics of Mangrove Topography and Vegetation;266
10.4.2.1;2.1 Classification of mangrove topography;267
10.4.2.2;2.2 Bottom condition of mangrove swamps;269
10.4.2.3;2.3 Influence of the vegetation on the hydrodynamics;269
10.4.3;3 Peculiar Hydrodynamics in Mangrove Areas;273
10.4.3.1;3.1 General equations that control water flow;273
10.4.3.2;3.2 Timescales of flow system;274
10.4.4;4 Modeling;278
10.4.4.1;4.1 Hydraulic model;278
10.4.4.2;4.2 Material dispersion model;284
10.4.4.3;4.3 Ecosystem model as the holistic system;288
10.4.5;5 Summary;290
10.4.6;Acknowledgments;291
10.4.7;References;291
10.5;Chapter 9 Mathematical Modeling of Tidal Flow over Salt Marshes and Tidal Flats with Applications to the Venice Lagoon;296
10.5.1;1 Introduction;296
10.5.2;2 Wetting and Drying, and the Dynamics of Very Shallow Flows;298
10.5.3;3 Wind and Wind Waves;305
10.5.4;4 Salt Marsh Vegetation;312
10.5.5;5 Salt Marshes and Tidal Flats Morphodynamics;314
10.5.6;6 Conclusions;318
10.5.7;Acknowledgments;319
10.5.8;References;319
11;Part III Tidal Flats;326
11.1;Chapter 10 Geomorphology and Sedimentology of Tidal Flats;328
11.1.1;1 Introduction;328
11.1.2;2 Basic Conditions for the Formation of Tidal Flats;330
11.1.3;3 Zonation in Sedimentation and Flat Surface Morphology;331
11.1.3.1;3.1 Vertical sediment sequences;331
11.1.3.2;3.2 Sediment and morphology on intertidal mud flats;333
11.1.3.3;3.3 Sediment and morphology on mixed sand–mud flats;336
11.1.3.4;3.4 Sediment and morphology on sand flats;338
11.1.4;4 Factors and Processes;338
11.1.4.1;4.1 Influences of quantity and composition of sediment supply;338
11.1.4.2;4.2 Sedimentation during tidal cycles;341
11.1.4.3;4.3 Long-term accretion–erosion cycles;343
11.1.4.4;4.4 Tidal creek systems;344
11.1.5;5 Summary;344
11.1.6;Acknowledgments;345
11.1.7;References;345
11.2;Chapter 11 Intertidal Flats: Ecosystem Functioning of Soft Sediment Systems;350
11.2.1;1 Introduction;350
11.2.2;2 The Depositional Habitat;352
11.2.2.1;2.1 The physical background to life in depositional habitats;354
11.2.2.2;2.2 The functional difference between mud and sand systems;357
11.2.3;3 The Functional Role of Biota;361
11.2.3.1;3.1 Patterns of life;361
11.2.3.2;3.2 Effects of sediment disturbance;364
11.2.3.3;3.3 Biodiversity impacts;366
11.2.3.4;3.4 Distribution in space and time;367
11.2.3.5;3.5 Trophic structure;368
11.2.3.6;3.6 New functional groups?;369
11.2.4;4 Future Shock: Climate Change and Ecosystem Function;370
11.2.5;Acknowledgments;371
11.2.6;References;371
11.3;Chapter 12 Biogeochemical Dynamics of Coastal Tidal Flats;378
11.3.1;1 Introduction;378
11.3.2;2 Transport Processes on Intertidal Flats;380
11.3.3;3 Microbial Processes;383
11.3.3.1;3.1 Organic matter sources;384
11.3.4;4 Nitrogen Cycle;385
11.3.4.1;4.1 Nitrogen fixation;385
11.3.4.2;4.2 Nitrification and nitrate reduction;387
11.3.4.3;4.3 Exchange of dissolved nitrogen between the sediment and the water column;390
11.3.4.4;4.4 Benthic microalgal N assimilation;391
11.3.5;5 Phosphorus Cycle;392
11.3.6;6 Silicon Cycle;395
11.3.7;7 Concluding Remarks;397
11.3.8;Acknowledgments;398
11.3.9;References;398
12;Part IV Marshes and Seagrasses;408
12.1;Chapter 13 Productivity and Biogeochemical Cycling in Seagrass Ecosystems;410
12.1.1;1 Introduction;410
12.1.1.1;1.1 Primary productivity;411
12.1.1.2;1.2 Fate of primary productivity – export and burial;413
12.1.2;2 Sediment Biogeochemistry – Modified by Seagrasses;416
12.1.2.1;2.1 Microscale effects;424
12.1.2.2;2.2 Nutrient cycling – importance of root uptake;425
12.1.3;3 Human Pressures and Effects on Biogeochemistry;426
12.1.4;4 Future Perspectives and Conclusions;428
12.1.5;Acknowledgment;429
12.1.6;References;429
12.2;Chapter 14 Tidal Salt Marshes: Geomorphology and Sedimentology;436
12.2.1;1 Introduction;436
12.2.2;2 Geographical Distribution;438
12.2.3;3 Why Salt Marshes Exist?;438
12.2.4;4 Geomorphology;439
12.2.4.1;4.1 Marsh evolution versus inheritance;439
12.2.4.2;4.2 Marsh edges and coastal change;439
12.2.4.3;4.3 Marsh terraces;440
12.2.4.4;4.4 Channels, creeks, and gullies;440
12.2.4.5;4.5 Creek networks;441
12.2.5;5 Morphodynamics;442
12.2.5.1;5.1 Tidal regime;442
12.2.5.2;5.2 Sediment sources and supply;442
12.2.5.3;5.3 Channelized flows;442
12.2.5.4;5.4 Platform flows;443
12.2.5.5;5.5 Accretion, compaction, and sea level change;443
12.2.6;6 Sedimentology;445
12.2.6.1;6.1 Grain size;445
12.2.6.2;6.2 Tidal bedding;446
12.2.6.3;6.3 Lithostratigraphic architecture;449
12.2.7;7 Concluding Discussion;450
12.2.8;References;450
12.3;Chapter 15 Ecosystem Structure of Tidal Saline Marshes;458
12.3.1;1 Introduction;458
12.3.2;2 Saline Marsh Communities;459
12.3.2.1;2.1 Emergent vegetation;459
12.3.2.2;2.2 Benthic algae;461
12.3.2.3;2.3 Nekton;461
12.3.2.4;2.4 Reptiles;462
12.3.2.5;2.5 Birds;463
12.3.2.6;2.6 Mammals;463
12.3.3;3 Interaction among Communities;463
12.3.3.1;3.1 Effects of animals on emergent vegetation distribution;463
12.3.3.2;3.2 Emergent vegetation as animal habitat;464
12.3.3.3;3.3 Nursery function;465
12.3.3.4;3.4 Saline marsh food webs;466
12.3.4;Acknowledgments;471
12.3.5;References;471
12.4;Chapter 16 Salt Marsh Biogeochemistry – An Overview;478
12.4.1;1 Introduction;478
12.4.2;2 Carbon;479
12.4.2.1;2.1 Exchanges;479
12.4.2.2;2.2 Internal cycling;482
12.4.2.3;2.3 Burial;488
12.4.3;3 Nitrogen;488
12.4.3.1;3.1 Exchanges;488
12.4.3.2;3.2 Internal cycling;495
12.4.3.3;3.3 Burial;497
12.4.4;4 Iron and Sulfur;498
12.4.4.1;4.1 Exchanges;498
12.4.4.2;4.2 Internal cycling;501
12.4.4.3;4.3 Burial;504
12.4.5;5 Phosphorus;504
12.4.5.1;5.1 Exchanges;505
12.4.5.2;5.2 Internal cycling;508
12.4.5.3;5.3 Burial;510
12.4.6;6 Marshes in Transition and Directions for Future Work;510
12.4.7;Acknowledgments;511
12.4.8;References;512
12.5;Chapter 17 The Role of Freshwater Flows on Salt Marsh Growth and Development;526
12.5.1;1 Introduction;526
12.5.2;2 Freshwater Routes in Salt Marshes;527
12.5.2.1;2.1 Stream flow;528
12.5.2.2;2.2 Groundwater flow;530
12.5.2.3;2.3 Rainfall;532
12.5.2.4;2.4 Surface flow;533
12.5.3;3 Associated Processes;533
12.5.3.1;3.1 Nutrient transport;533
12.5.3.2;3.2 Sediment transport;535
12.5.3.3;3.3 Organic matter transport;537
12.5.3.4;3.4 Pollutants;537
12.5.3.5;3.5 Salinity changes;538
12.5.4;4 Hydrological Impacts in Salt Marshes;540
12.5.5;5 Techniques for the Study of Marsh Hydrology;541
12.5.6;6 Implications of Freshwater Flows for Salt Marsh Management;542
12.5.7;7 Implications of Freshwater Flows for Salt Marsh Creation;542
12.5.8;8 The Ecohydrological Approach in Salt Marsh Studies;544
12.5.9;9 The Way Ahead – Problems and Challenges;545
12.5.10;References;545
12.6;Chapter 18 Tidal Freshwater Wetlands;548
12.6.1;1 Introduction;548
12.6.2;2 Hydrogeomorphic Setting;549
12.6.3;3 Biodiversity;552
12.6.3.1;3.1 Plants;552
12.6.3.2;3.2 Animals;556
12.6.4;4 Primary Production and Nutrient Cycling;560
12.6.5;5 Threats and Future Prospectus;561
12.6.6;References;563
12.7;Chapter 19 Biogeochemistry of Tidal Freshwater Wetlands;568
12.7.1;1 Introduction;568
12.7.2;2 Carbon Biogeochemistry;569
12.7.2.1;2.1 Carbon inputs;569
12.7.2.2;2.2 Carbon outputs;571
12.7.3;3 Processes Governing Organic Carbon Metabolism;575
12.7.3.1;3.1 Anaerobic respiration;576
12.7.3.2;3.2 Processes regulating methane production, oxidation, and emission;578
12.7.4;4 Nitrogen Biogeochemistry;579
12.7.4.1;4.1 Nitrogen exchanges;581
12.7.4.2;4.2 Nitrogen transformations;583
12.7.4.3;4.3 Nutrient regulation of plant production;584
12.7.5;5 Phosphorus Biogeochemistry;585
12.7.6;6 Silicon Biogeochemistry;587
12.7.7;7 Biogeochemical Effects of Sea-Level Rise;587
12.7.8;8 Concluding Comments;588
12.7.9;Acknowledgments;589
12.7.10;References;589
13;Part V Mangroves;596
13.1;Chapter 20 Geomorphology and Sedimentology of Mangroves;598
13.1.1;1 Introduction;598
13.1.2;2 Mangrove Environmental Settings;599
13.1.2.1;2.1 Terrigenous settings;599
13.1.2.2;2.2 Islands;603
13.1.2.3;2.3 Inland mangroves;603
13.1.3;3 Tidal Range and Sea-Level Control;605
13.1.4;4 Sedimentation in Mangroves;606
13.1.4.1;4.1 Excessive sedimentation;608
13.1.5;5 Mangroves as Sea-Level Indicators;610
13.1.6;6 Storms/Tsunamis;615
13.1.7;7 Inundation Changes Affecting Mangroves;616
13.1.8;8 Conclusions;618
13.1.9;Acknowledgment;618
13.1.10;References;618
13.2;Chapter 21 Geomorphology and Sedimentology of Mangroves and Salt Marshes: The Formation of Geobotanical Units;626
13.2.1;1 Driving Forces Determining Main Morphology and Vegetation Types in the Coastal Zone;626
13.2.2;2 Depositional Environment and Substrate Formation for the Development of Mangroves and Salt Marshes;628
13.2.3;3 Influence of Sea Level and Climate Oscillations on Local Geobotanical Features;630
13.2.4;4 Major Factors Leading to the Development of Salt Marshes and Mangroves at the Amazon Coastal Region: An Integrated Analysis;632
13.2.5;5 Influence of Geomorphology and Inundation Regime of Geobotanical Units on their Sediment Biogeochemistry;633
13.2.5.1;5.1 Regularly inundated wetlands;634
13.2.5.2;5.2 Rarely inundated wetlands;637
13.2.5.3;5.3 Waterlogged wetlands;639
13.2.5.4;5.4 Salt marshes and mangroves: Nutrient sources or sinks?;640
13.2.6;References;641
13.3;Chapter 22 Paradigm Shifts in Mangrove Biology;648
13.3.1;1 Introduction;648
13.3.2;2 Shifts in Established Paradigms;649
13.3.2.1;2.1 Rates of mangrove net primary productivity rival those of other tropical forests;649
13.3.2.2;2.2 Mangrove forests appear to be architecturally simple, but factors regulating succession and zonation are complex;655
13.3.2.3;2.3 Mangrove tree growth is not constant but related to climate patterns;657
13.3.2.4;2.4 Tree diversity is low, but faunal and microbial diversity can be high;657
13.3.2.5;2.5 Arboreal communities are important in food webs, exhibiting predatory, symbiotic, and mutualistic relations;659
13.3.2.6;2.6 Plant–Microbe–Soil Relations are tightly linked and help conserve scarce nutrients;660
13.3.2.7;2.7 Crabs are keystone species influencing function and structure in many, but not all, mangrove forests;661
13.3.2.8;2.8 Algae, not just detritus, are a significant food resource;663
13.3.2.9;2.9 Mangroves are an important link to fisheries;664
13.3.2.10;2.10 Mangroves are chemically diverse and a good source of natural products;665
13.3.3;3 Conclusions;666
13.3.4;References;667
13.4;Chapter 23 Ecogeomorphic Models of Nutrient Biogeochemistry for Mangrove Wetlands;674
13.4.1;1 Introduction;674
13.4.2;2 Ecogeomorphology of Mangroves (Model 1);681
13.4.3;3 A Multigradient Model (Model 2);682
13.4.4;4 Geochemical Model (Model 3);686
13.4.4.1;4.1 Redox zones in mangrove soils;686
13.4.4.2;4.2 Transition from reduced to oxidized zones;687
13.4.4.3;4.3 Hydroperiod effects on transition zones;688
13.4.4.4;4.4 Lower oxidation zone;689
13.4.4.5;4.5 Linkages in multigradient and geochemical models;690
13.4.5;5 Soil Biogeochemistry Model (NUMAN, Model 4);692
13.4.6;6 Mass Balance Exchange (Model 5);695
13.4.6.1;6.1 CO2 efflux from mangrove sediments and tidal waters;695
13.4.6.2;6.2 The balance of N fixation and denitrification;696
13.4.6.3;6.3 Tidal exchange;704
13.4.7;7 Contrasting Coastal Settings and Biogeochemical Models;705
13.4.8;Acknowledgments;708
13.4.9;References;708
14;Part VI Coastal Wetland Restoration and Management;718
14.1;Chapter 24 Seagrass Restoration;720
14.1.1;1 Introduction;720
14.1.2;2 Regional Activities;722
14.1.2.1;2.1 Europe;722
14.1.2.2;2.2 Australia;726
14.1.2.3;2.3 Oceania;728
14.1.2.4;2.4 Southeast Asia;729
14.1.2.5;2.5 China and Japan;730
14.1.2.6;2.6 New Zealand and the Pacific Islands;731
14.1.2.7;2.7 United States;732
14.1.3;3 Policy Issues Relevant to Mitigation;734
14.1.3.1;3.1 Costs of restoration;735
14.1.3.2;3.2 Valuation of ecosystem services;736
14.1.4;4 Conclusions;737
14.1.5;Acknowledgments;737
14.1.6;References;738
14.2;Chapter 25 Tidal Marsh Creation;748
14.2.1;1 Introduction;748
14.2.2;2 Principles and Techniques of Tidal Marsh Creation;749
14.2.2.1;2.1 Site selection;750
14.2.2.2;2.2 Conceptual design;750
14.2.2.3;2.3 Hydrology;751
14.2.2.4;2.4 Soil;752
14.2.2.5;2.5 Establishing vegetation;753
14.2.3;3 Evaluating Functional Equivalence of Created Tidal Marshes;756
14.2.3.1;3.1 Biological productivity and food webs;756
14.2.3.2;3.2 Biogeochemical cycles;763
14.2.4;4 Summary;766
14.2.5;References;766
14.3;Chapter 26 Salt Marsh Restoration;770
14.3.1;1 Introduction;770
14.3.2;2 Setting Objectives;771
14.3.3;3 Planning for the Future;773
14.3.4;4 Addressing Causes and not Symptoms;777
14.3.5;5 Managing Disturbance;778
14.3.5.1;5.1 Restoring hydrology;778
14.3.5.2;5.2 Managing weeds;779
14.3.5.3;5.3 Introduced fauna;782
14.3.5.4;5.4 Grazing;783
14.3.5.5;5.5 Pollution;784
14.3.6;6 Conflicting Priorities;787
14.3.7;7 Discussion;788
14.3.8;8 Conclusions;789
14.3.9;References;789
14.4;Chapter 27 Managed Realignment: Re-creating Intertidal Habitats on Formerly Reclaimed Land;796
14.4.1;1 Introduction;796
14.4.2;2 Location, Drivers, and Constraints to Managed Realignment;798
14.4.3;3 Site Evolution;801
14.4.3.1;3.1 Sediments;801
14.4.3.2;3.2 Creeks;802
14.4.3.3;3.3 Soils;804
14.4.3.4;3.4 Nutrient fluxes;805
14.4.3.5;3.5 Vegetation;806
14.4.3.6;3.6 Fishes;809
14.4.3.7;3.7 Spiders;810
14.4.3.8;3.8 Benthic invertebrates;811
14.4.3.9;3.9 Birds;812
14.4.4;4 Challenges in Managed Realignment Research;813
14.4.5;Acknowledgments;814
14.4.6;References;814
14.5;Chapter 28 Methods and Criteria for Successful Mangrove Forest Restoration;820
14.5.1;1 Introduction;820
14.5.2;2 General Site Selection for Restoration;821
14.5.3;3 Specific Site Selection for Restoration;822
14.5.4;4 Establishing Success Criteria;825
14.5.5;5 Monitoring and Reporting Success;826
14.5.6;6 Functionality of Restored Mangrove Forests;827
14.5.7;7 Summary;829
14.5.8;References;831
14.6;Chapter 29 Evaluation of Restored Tidal Freshwater Wetlands;834
14.6.1;1 Introduction;834
14.6.2;2 Characteristics of Restored TFW;835
14.6.3;3 Success Evaluation of Restored Wetlands;838
14.6.4;4 Ecosystem Attributes Measured at Restored TFW;839
14.6.5;5 Criteria for Successful Restoration of TFW;841
14.6.5.1;5.1 Hydrologic criteria;846
14.6.5.2;5.2 Geomorphological criteria;846
14.6.5.3;5.3 Soil criteria;847
14.6.5.4;5.4 Salinity criteria;848
14.6.5.5;5.5 Vegetation criteria;848
14.6.5.6;5.6 Seed bank criteria;849
14.6.5.7;5.7 Benthic invertebrate criteria;850
14.6.5.8;5.8 Fish and wildlife criteria;850
14.6.6;6 Case Study: Evaluation of Restored TFW of the Anacostia River, Washington, DC, USA;850
14.6.6.1;6.1 Characteristics of restored and reference sites;851
14.6.6.2;6.2 Evaluation of success of restored TFW;852
14.6.7;7 Conclusions and Recommendations;859
14.6.7.1;7.1 Restoration of TFW in urban landscapes and selection of urban reference sites;859
14.6.7.2;7.2 Establishment of vegetation;859
14.6.7.3;7.3 Control of nonnative species;860
14.6.7.4;7.4 Implications for restoration of TFW;860
14.6.8;Acknowledgements;861
14.6.9;References;861
15;Part VII Coastal Wetland Sustainability and Landscape Dynamics;866
15.1;Chapter 30 Surface Elevation Models;868
15.1.1;1 Introduction;868
15.1.2;2 Measuring Processes that Affect Wetland Elevation;871
15.1.3;3 Types of Models;872
15.1.3.1;3.1 Zero-dimensional mineral sediment models;873
15.1.3.2;3.2 Zero-dimensional organic sediment process models;875
15.1.3.3;3.3 Geomorphic models;879
15.1.4;4 Future Directions for Model Improvement;880
15.1.4.1;4.1 Data gaps;881
15.1.4.2;4.2 Integrating models;882
15.1.4.3;4.3 Improved linkage between sediment models and vegetation;882
15.1.4.4;4.4 Spatialization;883
15.1.5;5 Conclusions;883
15.1.6;References;883
15.2;Chapter 31 Salt Marsh–Mangrove Interactions in Australasia and the Americas;888
15.2.1;1 Introduction;888
15.2.2;2 Distribution/Geomorphic Settings – Where do Mangrove and Salt Marsh Coexist?;889
15.2.2.1;2.1 Mangrove distribution;889
15.2.2.2;2.2 Salt marsh distribution;891
15.2.2.3;2.3 Coexisting mangrove and salt marsh;892
15.2.3;3 Long-Term Dynamics;895
15.2.3.1;3.1 Tropical northern Australia;895
15.2.3.2;3.2 Southeastern Australia;896
15.2.3.3;3.3 Western Atlantic–Caribbean Region;898
15.2.4;4 Recent Interactions;899
15.2.4.1;4.1 Air photographic evidence of mangrove–salt marsh dynamics in SE Australia;899
15.2.4.2;4.2 Saltwater intrusion in Northern Australia;900
15.2.4.3;4.3 Western Atlantic–Gulf of Mexico;900
15.2.5;5 Stressors Controlling Delimitation of Mangrove;902
15.2.5.1;5.1 Geomorphic and hydrological controls;903
15.2.5.2;5.2 Climatic controls;906
15.2.5.3;5.3 Physicochemical factors;907
15.2.5.4;5.4 Biotic interactions;907
15.2.6;6 Conclusions;908
15.2.7;References;909
15.3;Chapter 32 Wetland Landscape Spatial Models;918
15.3.1;1 Introduction;918
15.3.2;2 Physical Models;920
15.3.3;3 Hydraulic Modeling;920
15.3.4;4 Hydrodynamic Modeling;922
15.3.4.1;4.1 Finite difference solutions;925
15.3.4.2;4.2 Finite element solutions;926
15.3.4.3;4.3 Finite volume solutions;927
15.3.5;5 Ecological Models;928
15.3.6;6 Individual-Based Modeling;928
15.3.7;7 Eco-Geomorphological Modeling;929
15.3.8;8 Ecosystem-Level Modeling;930
15.3.9;9 Desktop Dynamic Modeling;933
15.3.10;10 Conclusions;933
15.3.11;Acknowledgments;935
15.3.12;References;935
15.4;Subject Index;942
15.5;Geographic Index;960
15.6;Taxonomic Index;966



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.