Peng / Wang / Li | Human Activity Recognition and Anomaly Detection | E-Book | sack.de
E-Book

E-Book, Englisch, 147 Seiten

Reihe: Communications in Computer and Information Science

Peng / Wang / Li Human Activity Recognition and Anomaly Detection

4th International Workshop, DL-HAR 2024, and First International Workshop, ADFM 2024, Held in Conjunction with IJCAI 2024, Jeju, South Korea, August 3–9, 2024, Revised Selected Papers
Erscheinungsjahr 2024
ISBN: 978-981-97-9003-6
Verlag: Springer Singapore
Format: PDF
Kopierschutz: 1 - PDF Watermark

4th International Workshop, DL-HAR 2024, and First International Workshop, ADFM 2024, Held in Conjunction with IJCAI 2024, Jeju, South Korea, August 3–9, 2024, Revised Selected Papers

E-Book, Englisch, 147 Seiten

Reihe: Communications in Computer and Information Science

ISBN: 978-981-97-9003-6
Verlag: Springer Singapore
Format: PDF
Kopierschutz: 1 - PDF Watermark



This book constitutes the refereed proceedings of the 4th International and First International Workshop on Human Activity Recognition and Anomaly Detection, Conjunction with IJCAI 2024, held in Jeju, South Korea, during August 3–9, 2024.

The 9 full papers included in this book were carefully reviewed and selected from 14 submissions. They were organized in topical sections as follows: Anomaly Detection with Foundation Models and Deep Learning for Human Activity Recognition.

Peng / Wang / Li Human Activity Recognition and Anomaly Detection jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


.- Anomaly Detection with Foundation Models.
.- GPT-4V-AD: Exploring Grounding Potential of VQA-oriented GPT-4V for Zero-shot Anomaly Detection.
.- CLIP-AD: A Language-Guided Staged Dual-Path Model for Zero-shot Anomaly Detection.
.- DDPM-MoCo: Advancing Industrial Surface Defect Generation and Detection with Generative and Contrastive Learning.
.- Dual Memory-guided Probabilistic Model for Weakly-supervised Anomaly Detection.
.- Deep Learning for Human Activity Recognition.
.- Real-Time Human Action Prediction via Pose Kinematics.
.- Uncertainty Awareness for Unsupervised Domain Adaptation on Human Activity Recognition.
.- Deep Interaction Feature Fusion for Robust Human Activity Recognition.
.- How effective are Self-Supervised models for Contact Identification in Videos.
.- A Wearable Multi-Modal Edge-Computing System for Real-Time Kitchen Activity Recognition.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.