Pawlowsky-Glahn / Buccianti | Compositional Data Analysis | Buch | 978-0-470-71135-4 | sack.de

Buch, Englisch, 400 Seiten, Format (B × H): 175 mm x 250 mm, Gewicht: 872 g

Pawlowsky-Glahn / Buccianti

Compositional Data Analysis


1. Auflage 2011
ISBN: 978-0-470-71135-4
Verlag: Wiley

Buch, Englisch, 400 Seiten, Format (B × H): 175 mm x 250 mm, Gewicht: 872 g

ISBN: 978-0-470-71135-4
Verlag: Wiley


It is difficult to imagine that the statistical analysis of compositional data has been a major issue of concern for more than 100 years. It is even more difficult to realize that so many statisticians and users of statistics are unaware of the particular problems affecting compositional data, as well as their solutions. The issue of ``spurious correlation'', as the situation was phrased by Karl Pearson back in 1897, affects all data that measures parts of some whole, such as percentages, proportions, ppm and ppb. Such measurements are present in all fields of science, ranging from geology, biology, environmental sciences, forensic sciences, medicine and hydrology.

This book presents the history and development of compositional data analysis along with Aitchison's log-ratio approach. Compositional Data Analysis describes the state of the art both in theoretical fields as well as applications in the different fields of science.

Key Features:

- Reflects the state-of-the-art in compositional data analysis.
- Gives an overview of the historical development of compositional data analysis, as well as basic concepts and procedures.
- Looks at advances in algebra and calculus on the simplex.
- Presents applications in different fields of science, including, genomics, ecology, biology, geochemistry, planetology, chemistry and economics.
- Explores connections to correspondence analysis and the Dirichlet distribution.
- Presents a summary of three available software packages for compositional data analysis.
- Supported by an accompanying website featuring R code.

Applied scientists working on compositional data analysis in any field of science, both in academia and professionals will benefit from this book, along with graduate students in any field of science working with compositional data.

Pawlowsky-Glahn / Buccianti Compositional Data Analysis jetzt bestellen!

Weitere Infos & Material


Preface xvii

List of Contributors xix

Part I Introduction 1

1 A Short History of Compositional Data Analysis 3
John Bacon-Shone

1.1 Introduction 3

1.2 Spurious Correlation 3

1.3 Log and Log-Ratio Transforms 4

1.4 Subcompositional Dependence 5

1.5 alr, clr, ilr: Which Transformation to Choose? 5

1.6 Principles, Perturbations and Back to the Simplex 6

1.7 Biplots and Singular Value Decompositions 7

1.8 Mixtures 7

1.9 Discrete Compositions 8

1.10 Compositional Processes 8

1.11 Structural, Counting and Rounded Zeros 8

1.12 Conclusion 9

Acknowledgement 9

References 9

2 Basic Concepts and Procedures 12
Juan José Egozcue and Vera Pawlowsky-Glahn

2.1 Introduction 12

2.2 Election Data and Raw Analysis 13

2.3 The Compositional Alternative 15

2.4 Geometric Settings 17

2.5 Centre and Variability 22

2.6 Conclusion 27

Acknowledgements 27

References 27

Part II Theory – Statistical Modelling 29

3 The Principle of Working on Coordinates 31
Glòria Mateu-Figueras, Vera Pawlowsky-Glahn and Juan José Egozcue

3.1 Introduction 31

3.2 The Role of Coordinates in Statistics 32

3.3 The Simplex 33

3.4 Move or Stay in the Simplex 38

3.5 Conclusions 40

Acknowledgements 41

References 41

4 Dealing with Zeros 43
Josep Antoni Martín-Fernández, Javier Palarea-Albaladejo and Ricardo Antonio Olea

4.1 Introduction 43

4.2 Rounded Zeros 44

4.3 Count Zeros 50

4.4 Essential Zeros 53

4.5 Difficulties, Troubles and Challenges 55

Acknowledgements 57

References 57

5 Robust Statistical Analysis 59
Peter Filzmoser and Karel Hron

5.1 Introduction 59

5.2 Elements of Robust Statistics from a Compositional Point of View 60

5.3 Robust Methods for Compositional Data 63

5.4 Case Studies 66

5.5 Summary 70

Acknowledgement 71

References 71

6 Geostatistics for Compositions 73
Raimon Tolosana-Delgado, Karl Gerald van den Boogaart and Vera Pawlowsky-Glahn

6.1 Introduction 73

6.2 A Brief Summary of Geostatistics 74

6.3 Cokriging of Regionalised Compositions 76

6.4 Structural Analysis of Regionalised Composition 76

6.5 Dealing with Zeros: Replacement Strategies and Simplicial Indicator Cokriging 78

6.6 Application 79

6.7 Conclusions 84

Acknowledgements 84

References 84

7 Compositional VARIMA Time Series 87
Carles Barceló-Vidal, Lucía Aguilar and Josep Antoni Martín-Fernández

7.1 Introduction 87

7.2 The Simplex S D as a Compositional Space 89

7.3 Compositional Time Series Models 91

7.4 CTS Modelling: An Example 94

7.5 Discussion 99

Acknowledgements 99

References 100

Appendix 102

8 Compositional Data and Correspondence Analysis 104
Michael Greenacre

8.1 Introduction 104

8.2 Comparative Technical Definitions 105

8.3 Properties and Interpretation of LRA and CA 107

8.4 Application to Fatty Acid Compositional Data 107

8.5 Discussion and Conclusions 111

Acknowledgements 112

References 112

9 Use of Survey Weights for the Analysis of Compositional Data 114
Monique Graf

9.1 Introduction 114

9.2 Elements of Survey Design 115

9.3 Application to Compositional Data 122

9.4 Discussion 126

References 126

10 Notes on the Scaled Dirichlet Distribution 128
Gianna Serafina Monti, Glòria Mateu-Figueras and Vera Pawlowsky-Glahn

10.1 Introduction 128

10.2 Genesis of the Scaled Dirichlet Distribution 129

10.3 Properties of the Scaled Dirichlet Distribution 131

10.4 Conclusions 136

Acknowledgements 137

References 137

Part III Theory – Algebra and Calculus 139

11 Elements of Simplicial Linear Algebra and Geometry 141
Juan José Egozcue, Carles Barceló-Vidal, Josep Antoni Martín-Fernández, Eusebi Jarauta-Bragulat, José LuisDíaz-Barrero and Glòria Mateu-Figueras

11.1 Introduction 141

11.2 Elements of Simplicial Geometry 142

11.3 Linear Functions 151

11.4 Conclusions 156

Acknowledgements 156

References 156

12 Calculus of Simplex-Valued Functions 158
Juan José Egozcue, Eusebi Jarauta-Bragulat and José LuisDíaz-Barrero

12.1 Introduction 158

12.3 Integration 171

12.4 Conclusions 174

Acknowledgements 175

References 175

13 Compositional Differential Calculus on the Simplex 176
Carles Barceló-Vidal, Josep Antoni Martín-Fernández and Glòria Mateu-Figueras

13.1 Introduction 176

13.2 Vector-Valued Functions on the Simplex 177

13.3 C-Derivatives on the Simplex 178

13.4 Example: Experiments with Mixtures 185

13.5 Discussion 189

Acknowledgements 190

References 190

Part IV Applications 191

14 Proportions, Percentages, PPM: Do the Molecular Biosciences Treat Compositional Data Right? 193
David Lovell, Warren Müller, Jen Taylor, Alec Zwart and Chris Helliwell

14.1 Introduction 193

14.2 The Omics Imp and Two Bioscience Experiment Paradigms 194

14.3 The Impact of Compositional Constraints in the Omics 197

14.4 Impact of Compositional Constraints on Correlation and Covariance 201

14.5 Implications 204

Acknowledgements 206

References 206

15 Hardy–Weinberg Equilibrium: A Nonparametric Compositional Approach 208
Jan Graffelman and Juan José Egozcue

15.1 Introduction 208

15.2 Genetic Data Sets 209

15.3 Classical Tests for HWE 210

15.4 A Compositional Approach 210

15.5 Example 214

15.6 Conclusion and Discussion 215

Acknowledgements 215

References 215

16 Compositional Analysis in Behavioural and Evolutionary Ecology 218
Michele Edoardo Raffaele Pierotti and Josep Antoni Martín-Fernández

16.1 Introduction 218

16.2 CODA in Population Genetics 219

16.3 CODA in Habitat Choice 222

16.4 Multiple Choice and Individual Variation in Preferences 224

16.5 Ecological Specialization 228

16.6 Time Budgets: More on Specialization 229

16.7 Conclusions 231

Acknowledgements 231

References 231

17 Flying in Compositional Morphospaces: Evolution of Limb Proportions in Flying Vertebrates 235
Luis Azevedo Rodrigues, Josep Daunis-i-Estadella, Glòria Mateu-Figueras and Santiago Thió-Henestrosa

17.1 Introduction 235

17.2 Flying Vertebrates – General Anatomical and Functional Characteristics 236

17.3 Materials 236

17.4 Methods 238

17.5 Aitchison Distance Disparity Metrics 239

17.6 Statistical Tests 243

17.7 Biplots 244

17.8 Balances 246

17.9 Size Effect 249

17.10 Final Remarks 249

Acknowledgements 252

References 252

18 Natural Laws Governing the Distribution of the Elements in Geochemistry: The Role of the Log-Ratio Approach 255
Antonella Buccianti

18.1 Introduction 255

18.2 Geochemical Processes and Log-Ratio Approach 256

18.3 Log-Ratio Approach and Water Chemistry 258

18.4 Log-Ratio Approach and Volcanic Gas Chemistry 261

18.5 Log-Ratio Approach and Subducting Sediment Composition 263

18.6 Conclusions 265

Acknowledgements 265

References 265

19 Compositional Data Analysis in Planetology: The Surfaces of Mars and Mercury 267
Helmut Lammer, Peter Wurz, Josep Antoni Martín-Fernández and Herbert Iwo Maria Lichtenegger

19.1 Introduction 267

19.2 Compositional Analysis of Mars’ Surface 270

19.3 Compositional Analysis of Mercury’s Surface 274

19.4 Conclusion 278

Acknowledgement 278

References 278

20 Spectral Analysis of Compositional Data in Cyclostratigraphy 282
Eulogio Pardo-Igúzquiza and Javier Heredia

20.1 Introduction 282

20.2 The Method 283

20.3 Case Study 285

20.4 Discussion 287

20.5 Conclusions 288

Acknowledgement 288

References 288

21 Multivariate Geochemical Data Analysis in Physical Geography 290
Jennifer McKinley and Christopher David Lloyd

21.1 Introduction 290

21.2 Context 291

21.3 Data 293

21.4 Analysis 295

21.5 Discussion 299

21.6 Conclusion 300

Acknowledgement 300

References 300

22 Combining Isotopic and Compositional Data: A Discrimination of Regions Prone to Nitrate Pollution 302
Roger Puig, Raimon Tolosana-Delgado, Neus Otero and Albert Folch

22.1 Introduction 302

22.2 Study Area 303

22.3 Analytical Methods 306

22.4 Statistical Treatment 307

22.5 Results and Discussion 311

22.6 Conclusions 314

Acknowledgements 315

References 315

23 Applications in Economics 318
Tim Fry

23.1 Introduction 318

23.2 Consumer Demand Systems 319

23.3 Miscellaneous Applications 322

23.4 Compositional Time Series 323

23.5 New Directions 323

23.6 Conclusion 325

References 325

Part V Software 327

24 Exploratory Analysis Using CoDaPack 3D 329
Santiago Thió-Henestrosa and Josep Daunis-i-Estadella

24.1 CoDaPack 3D Description 329

24.2 Data Set Description 331

24.3 Exploratory Analysis 333

24.4 Summary and Conclusions 339

Acknowledgements 340

References 340

25 robCompositions: An R-package for Robust Statistical Analysis of Compositional Data 341
Matthias Templ, Karel Hron and Peter Filzmoser

25.1 General Information on the R-package robCompositions 341

25.2 Expressing Compositional Data in Coordinates 343

25.3 Multivariate Statistical Methods for Compositional Data Containing Outliers 345

25.4 Robust Imputation of Missing Values 351

25.5 Summary 354

References 354

26 Linear Models with Compositions in R 356
Raimon Tolosana-Delgado and Karl Gerald van den Boogaart

26.1 Introduction 356

26.2 The Illustration Data Set 357

26.3 Explanatory Binary Variable 360

26.4 Explanatory Categorical Variable 363

26.5 Explanatory Continuous Variable 365

26.6 Explanatory Composition 367

26.7 Conclusions 370

Acknowledgement 371

References 371

Index 373


Vera Pawlowsky-Glahn, Department of Computer Science and Applied Mathematics, University of Girona, Spain.

Antonella Buccianti, Department of Earth Sciences, University of Florence, Italy.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.