Pavlovic / Pavlovic | Function Classes on the Unit Disc | E-Book | sack.de
E-Book

E-Book, Englisch, Band 52, 462 Seiten

Reihe: De Gruyter Studies in MathematicsISSN

Pavlovic / Pavlovic Function Classes on the Unit Disc

An Introduction
1. Auflage 2013
ISBN: 978-3-11-028190-3
Verlag: De Gruyter
Format: PDF
Kopierschutz: 1 - PDF Watermark

An Introduction

E-Book, Englisch, Band 52, 462 Seiten

Reihe: De Gruyter Studies in MathematicsISSN

ISBN: 978-3-11-028190-3
Verlag: De Gruyter
Format: PDF
Kopierschutz: 1 - PDF Watermark



This monograph contains a study on various function classes, a number of new results and new or easy proofs of old results (Fefferman-Stein theorem on subharmonic behavior, theorems on conjugate functions and fractional integration on Bergman spaces, Fefferman's duality theorem), which are interesting for specialists; applications of the Hardy-Littlewood inequalities on Taylor coefficients to ()-maximal theorems and ()-convergence; a study of BMOA, due to Knese, based only on Green's formula; the problem of membership of singular inner functions in Besov and Hardy-Sobolev spaces; a full discussion of g-function (all > 0) and Calderón's area theorem; a new proof, due to Astala and Koskela, of the Littlewood-Paley inequality for univalent functions; and new results and proofs on Lipschitz spaces, coefficient multipliers and duality, including compact multipliers and multipliers on spaces with non-normal weights.

It also contains a discussion of analytic functions and lacunary series with values in quasi-Banach spaces with applications to function spaces and composition operators. Sixteen open questions are posed.

The reader is assumed to have a good foundation in Lebesgue integration, complex analysis, functional analysis, and Fourier series.

Further information can be found at the author's website at http://poincare.matf.bg.ac.rs/~pavlovic.

Pavlovic / Pavlovic Function Classes on the Unit Disc jetzt bestellen!

Zielgruppe


Graduate and PhD Students; Researches in the Area of Complex Anal


Autoren/Hrsg.


Weitere Infos & Material


Preface 1 Quasi-Banach spaces 1.1 Quasinorm and p-norm 1.2 Linear operators 1.3 The closed graph theorem The open mapping theorem The uniform boundedness principle The closed graph theorem 1.4 F-spaces 1.5 The spaces lp 1.6 Spaces of analytic functions 1.7 The Abel dual of a space of analytic functions 1.7a Homogeneous spaces 2 Interpolation and maximal functions 2.1 The Riesz/Thorin theorem 2.2 Weak Lp-spaces and Marcinkiewicz’s theorem 2.3 The maximal function and Lebesgue points 2.4 The Rademacher functions and Khintchine’s inequality 2.5 Nikishin’s theorem 2.6 Nikishin and Stein’s theorem 2.7 Banach’s principle, the theorem on a.e. convergence, and Sawier’s theorems 2.8 Addendum: Vector-valued maximal theorem 3 Poisson integral 3.1 Harmonic functions 3.1a Green’s formulas 3.1b The Poisson integral 3.2 Borel measures and the space h1 3.3 Positive harmonic functions 3.4 Radial and non-tangential limits of the Poisson integral 3.4a Convolution of harmonic functions 3.5 The spaces hp and Lp(T) 3.6 A theorem of Littlewood and Paley 3.7 Harmonic Schwarz lemma 4 Subharmonic functions 4.1 Basic properties 4.1a The maximum principle 4


Miroslav Pavlovic, University of Belgrade, Serbia.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.