Buch, Englisch, 248 Seiten, Format (B × H): 156 mm x 234 mm, Gewicht: 526 g
Algorithms and Applications
Buch, Englisch, 248 Seiten, Format (B × H): 156 mm x 234 mm, Gewicht: 526 g
ISBN: 978-0-367-63185-7
Verlag: CRC Press
The book examines several classes of recommendation algorithms, including
- Machine learning algorithms
- Community detection algorithms
- Filtering algorithms
Various efficient and robust product recommender systems using machine learning algorithms are helpful in filtering and exploring unseen data by users for better prediction and extrapolation of decisions. These are providing a wider range of solutions to such challenges as imbalanced data set problems, cold-start problems, and long tail problems. This book also looks at fundamental ontological positions that form the foundations of recommender systems and explain why certain recommendations are predicted over others.
Techniques and approaches for developing recommender systems are also investigated. These can help with implementing algorithms as systems and include
- A latent-factor technique for model-based filtering systems
- Collaborative filtering approaches
- Content-based approaches
Finally, this book examines actual systems for social networking, recommending consumer products, and predicting risk in software engineering projects.
Zielgruppe
Academic, Postgraduate, and Undergraduate Advanced
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik EDV | Informatik Informatik Künstliche Intelligenz
- Mathematik | Informatik EDV | Informatik Programmierung | Softwareentwicklung Software Engineering
- Mathematik | Informatik EDV | Informatik Programmierung | Softwareentwicklung Algorithmen & Datenstrukturen
- Mathematik | Informatik EDV | Informatik Daten / Datenbanken
- Mathematik | Informatik Mathematik Algebra Zahlentheorie
- Mathematik | Informatik EDV | Informatik EDV & Informatik Allgemein
- Wirtschaftswissenschaften Betriebswirtschaft Bereichsspezifisches Management Vertrieb
- Wirtschaftswissenschaften Volkswirtschaftslehre Volkswirtschaftslehre Allgemein Verhaltensökonomik
- Mathematik | Informatik EDV | Informatik Informatik Rechnerarchitektur
Weitere Infos & Material
Preface. Acknowledgements. Editors. List of Contributors. Chapter 1 Collaborative Filtering-based Robust Recommender System using Machine Learning Algorithms. Chapter 2 An Experimental Analysis of Community Detection Algorithms on a Temporally Evolving Dataset. Chapter 3 Why This Recommendation: Explainable Product Recommendations with Ontological Knowledge Reasoning. Chapter 4 Model-based Filtering Systems using a Latent-factor Technique. Chapter 5 Recommender Systems for the Social Networking Context for Collaborative Filtering and Content-Based Approaches. Chapter 6 Recommendation System for Risk Assessment in Requirements Engineering of Software with Tropos Goal–Risk Model. Chapter 7 A Comprehensive Overview to the Recommender System: Approaches, Algorithms and Challenges. Chapter 8 Collaborative Filtering Techniques: Algorithms and Advances. Index.