Paulsen | Abstract Algebra | E-Book | sack.de
E-Book

E-Book, Englisch, 649 Seiten

Reihe: Textbooks in Mathematics

Paulsen Abstract Algebra

An Interactive Approach, Second Edition
2. Auflage 2016
ISBN: 978-1-4987-1979-7
Verlag: CRC Press
Format: EPUB
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)

An Interactive Approach, Second Edition

E-Book, Englisch, 649 Seiten

Reihe: Textbooks in Mathematics

ISBN: 978-1-4987-1979-7
Verlag: CRC Press
Format: EPUB
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)



The new edition of Abstract Algebra: An Interactive Approach presents a hands-on and traditional approach to learning groups, rings, and fields. It then goes further to offer optional technology use to create opportunities for interactive learning and computer use.

This new edition offers a more traditional approach offering additional topics to the primary syllabus placed after primary topics are covered. This creates a more natural flow to the order of the subjects presented. This edition is transformed by historical notes and better explanations of why topics are covered.

This innovative textbook shows how students can better grasp difficult algebraic concepts through the use of computer programs. It encourages students to experiment with various applications of abstract algebra, thereby obtaining a real-world perspective of this area.

Each chapter includes, corresponding Sage notebooks, traditional exercises, and several interactive computer problems that utilize Sage and Mathematica® to explore groups, rings, fields and additional topics.

This text does not sacrifice mathematical rigor. It covers classical proofs, such as Abel’s theorem, as well as many topics not found in most standard introductory texts. The author explores semi-direct products, polycyclic groups, Rubik’s Cube®-like puzzles, and Wedderburn’s theorem. The author also incorporates problem sequences that allow students to delve into interesting topics, including Fermat’s two square theorem.

Paulsen Abstract Algebra jetzt bestellen!

Autoren/Hrsg.


Weitere Infos & Material


Preliminaries
Integer Factorization
Functions
Modular Arithmetic
Rational and Real Numbers

Understanding the Group Concept
Introduction to Groups
Modular Congruence
The Definition of a Group

The Structure within a Group
Generators of Groups
Defining Finite Groups in Sage
Subgroups

Patterns within the Cosets of Groups
Left and Right Cosets
Writing Secret Messages
Normal Subgroups
Quotient Groups

Mappings between Groups
Isomorphisms
Homomorphisms
The Three Isomorphism Theorems

Permutation Groups
Symmetric Groups
Cycles
Cayley's Theorem
Numbering the Permutations

Building Larger Groups from Smaller Groups
The Direct Product
The Fundamental Theorem of Finite Abelian Groups
Automorphisms
Semi-Direct Products

The Search for Normal Subgroups
The Center of a Group
The Normalizer and Normal Closure Subgroups
Conjugacy Classes and Simple Groups
The Class Equation and Sylow's Theorems

Solvable and Insoluble Groups
Subnormal Series and the Jordan-Hölder Theorem
Derived Group Series
Polycyclic Groups
Solving the PyraminxTM

Introduction to Rings
The Definition of a Ring
Entering Finite Rings into Sage
Some Properties of Rings

The Structure within Rings
Subrings
Quotient Rings and Ideals
Ring Isomorphisms
Homomorphisms and Kernels

Integral Domains and Fields
Polynomial Rings
The Field of Quotients
Complex Numbers
Ordered Commutative Rings

Unique Factorization
Factorization of Polynomials
Unique Factorization Domains
Principal Ideal Domains
Euclidean Domains

Finite Division Rings
Entering Finite Fields in Sage
Properties of Finite Fields
Cyclotomic Polynomials
Finite Skew Fields

The Theory of Fields
Vector Spaces
Extension Fields
Splitting Fields

Galois Theory
The Galois Group of an Extension Field
The Galois Group of a Polynomial in Q
The Fundamental Theorem of Galois Theory
Applications of Galois Theory

Appendix: Sage vs. Mathematica®

Answers to Odd-Numbered Problems

Bibliography


William Paulsen, PhD, professor of mathematics, Arkansas State University, USA



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.