Maji / Paul | Scalable Pattern Recognition Algorithms | Buch | 978-3-319-05629-6 | sack.de

Buch, Englisch, 304 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 6746 g

Maji / Paul

Scalable Pattern Recognition Algorithms

Applications in Computational Biology and Bioinformatics
2014
ISBN: 978-3-319-05629-6
Verlag: Springer

Applications in Computational Biology and Bioinformatics

Buch, Englisch, 304 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 6746 g

ISBN: 978-3-319-05629-6
Verlag: Springer


Recent advances in high-throughput technologies have resulted in a deluge of biological information. Yet the storage, analysis, and interpretation of such multifaceted data require effective and efficient computational tools.

This unique text/reference addresses the need for a unified framework describing how soft computing and machine learning techniques can be judiciously formulated and used in building efficient pattern recognition models. The book reviews both established and cutting-edge research, following a clear structure reflecting the major phases of a pattern recognition system: classification, feature selection, and clustering. The text provides a careful balance of theory, algorithms, and applications, with a particular emphasis given to applications in computational biology and bioinformatics.

Topics and features: reviews the development of scalable pattern recognition algorithms for computational biology and bioinformatics; integrates different soft computing and machine learning methodologies with pattern recognition tasks; discusses in detail the integration of different techniques for handling uncertainties in decision-making and efficiently mining large biological datasets; presents a particular emphasis on real-life applications, such as microarray expression datasets and magnetic resonance images; includes numerous examples and experimental results to support the theoretical concepts described; concludes each chapter with directions for future research and a comprehensive bibliography.

This important work will be of great use to graduate students and researchers in the fields of computer science, electrical and biomedical engineering. Researchers and practitioners involved in pattern recognition, machine learning, computational biology and bioinformatics, data mining, and soft computing will also find the book invaluable.

Maji / Paul Scalable Pattern Recognition Algorithms jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


Introduction to Pattern Recognition and Bioinformatics

Part I Classification

Neural Network Tree for Identification of Splice Junction and Protein Coding Region in DNA

Design of String Kernel to Predict Protein Functional Sites Using Kernel-Based Classifiers

Part II Feature Selection

Rough Sets for Selection of Molecular Descriptors to Predict Biological Activity of Molecules

f -Information Measures for Selection of Discriminative Genes from Microarray Data

Identification of Disease Genes Using Gene Expression and Protein-Protein Interaction Data

Rough Sets for Insilico Identification of Differentially Expressed miRNAs

Part III Clustering

Grouping Functionally Similar Genes from Microarray Data Using Rough-Fuzzy Clustering

Mutual Information Based Supervised Attribute Clustering for Microarray Sample Classification

Possibilistic Biclustering for Discovering Value-Coherent Overlapping d -Biclusters

Fuzzy Measures and Weighted Co-Occurrence Matrix for Segmentation of Brain MR Images


Dr. Pradipta Maji is an Associate Professor in the Machine Intelligence Unit at the Indian Statistical Institute, Kolkata, India. Dr. Sushmita Paul is a Research Associate at the same institution.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.