Patra / Fraceto / Das | Green Nanoparticles | E-Book | www2.sack.de
E-Book

E-Book, Englisch, 395 Seiten

Reihe: Nanotechnology in the Life Sciences

Patra / Fraceto / Das Green Nanoparticles

Synthesis and Biomedical Applications
1. Auflage 2020
ISBN: 978-3-030-39246-8
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark

Synthesis and Biomedical Applications

E-Book, Englisch, 395 Seiten

Reihe: Nanotechnology in the Life Sciences

ISBN: 978-3-030-39246-8
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark



Nanotechnology is the application of science to control matter at the molecular level. It has become one of the most promising applied technologies in all areas of science. Nanoparticles have multi-functional properties and have created very interesting applications in various fields such as medicine, nutrition, bioenergy, agriculture and the environment. 
But the biogenic syntheses of monodispersed nanoparticles with specific sizes and shapes have been a challenge in biomaterial science. Nanoparticles are of great interest due to their extremely small size and large surface-to-volume ratio, which lead to both chemical and physical differences in their properties (e.g., mechanical properties, biological and sterical properties, catalytic activity, thermal and electrical conductivity, optical absorption and melting point) compared to bulk of the same chemical composition. Recently, however, synthesizing metal nanoparticles using green technology via microorganisms, plants, viruses, and so on, has been extensively studied and has become recognized as a green and efficient way for further exploiting biological systems as convenient nanofactories. Thus the biological synthesis of nanoparticles is increasingly regarded as a rapid, ecofriendly, and easily scaled-up technology. 
Today researchers are developing new techniques and materials using nanotechnology that may be suitable for plants to boost their native functions. Recently, biological nanoparticles were found to be more pharmacologically active than physico-chemically synthesized nanoparticles. Various applications of biosynthesized nanoparticles have been discovered, especially in the field of biomedical research, such as applications to specific delivery of drugs, use for tumor detection, angiogenesis, genetic disease and genetic disorder diagnosis, photoimaging, and photothermal therapy. Further, iron oxide nanoparticles have been applied to cancer therapy, hyperthermia, drug delivery, tissue repair, cell labeling, targeting and immunoassays, detoxification of biological fluids, magnetic resonance imaging, and magnetically responsive drug delivery therapy. 
Nanoparticle synthesis for plant byproducts for biomedical applications has vast potential. This book offers researchers in plant science and biomedicine the latest research and opportunity to develop new tools for the synthesis of environmentally friendly and cost-effective nanoparticles for applications in biomedicine as well as other various fields.


Jayanta KumarAssistant ProfessorResearch Institute of Biotechnology and Medical Converged ScienceDongguk UniversityRepublic of Korea
Leonardo Fernandes FracetoProfessorSão Paulo State University (UNESP)
Institute of Science and Technology of Sorocaba
Brazil
Gitishree DasAssistant ProfessorResearch Institute of Biotechnology and Medical Converged ScienceDongguk UniversityRepublic of Korea
Estefânia Vangelie Ramos Campos
São Paulo State University (UNESP)
Institute of Science and Technology of Sorocaba
Brazil

Patra / Fraceto / Das Green Nanoparticles jetzt bestellen!

Weitere Infos & Material


1;Preface;6
2;Contents;8
3;About the Editors;10
4;Chapter 1: Biomedical Applications of Stimuli-Responsive Hydrogels;12
4.1;1 Introduction;12
4.2;2 PEG-Based Temperature-Sensitive Hydrogels: Structural and Physicochemical Properties;14
4.2.1;2.1 Hydrogels Mechanical Properties and Phase Organization Studied by Rheological Analysis and Small-Angle X-Ray Scattering (SAXS): Implications on Drug-Controlled Release;15
4.2.2;2.2 Biomedical Applications of Thermosensitive PEG-Based Hydrogels: From Structural Organization to Biopharmaceutical Use;18
4.2.3;2.3 pH-Sensitive PEG-Based Hydrogels: Theoretical Principles in pH-Sensitive Delivery Systems;20
4.2.4;2.4 Strategies to Make PEG pH-Sensitive: Chemical Modifications and Their Biomedical Applications;23
4.3;3 Conclusion and Prospects;27
4.4;References;28
5;Chapter 2: Viral and Nonviral Drug Delivery Systems for Medical Health Care: An Overview;32
5.1;1 Introduction;33
5.2;2 Necessity for Delivery Vectors in Biological Systems;34
5.2.1;2.1 Physical Protection;34
5.2.2;2.2 Targeted Delivery;34
5.2.3;2.3 Sustained Release;34
5.2.4;2.4 Regulated Rate of Clearance;36
5.3;3 General Overview of Viral Delivery Vectors;36
5.3.1;3.1 Adenovirus;36
5.3.2;3.2 Retrovirus;37
5.3.3;3.3 Designing a Retroviral Vector;38
5.3.4;3.4 Phage Virus;38
5.3.5;3.5 Filamentous Phage;38
5.3.6;3.6 Lambda Phage;39
5.4;4 General Overview of Non-viral Delivery Vectors;39
5.4.1;4.1 Liposomes;39
5.4.1.1;4.1.1 Ongoing Research and Clinically Approved Liposomal-Based Delivery Systems in Therapeutics;41
5.4.2;4.2 Microparticles;41
5.5;5 Microparticles for Delivery of Therapeutic Drugs;41
5.6;6 Microparticles for the Delivery of Genetic Material;42
5.6.1;6.1 Nanoparticles;43
5.7;7 Nanoparticulate-Based Drug Delivery in Cancer;44
5.8;8 Nanoparticle-Based Drug Delivery for the Treatment for Tuberculosis;44
5.9;9 Hazards Associated with Various Delivery Systems;45
5.10;10 Latest Trends in the Field of Vector-Mediated Delivery Systems;45
5.10.1;10.1 Niosomes;46
5.11;11 Conclusion;46
5.12;References;49
6;Chapter 3: Nanotoxicology in Plants;53
6.1;1 Introduction;53
6.2;2 Nanomaterials;54
6.2.1;2.1 Classification of Nanomaterials;55
6.2.1.1;2.1.1 Carbon-Based Nanomaterials;55
6.2.1.2;2.1.2 Inorganic-Based Nanomaterials;56
6.2.1.3;2.1.3 Quantum Dots;56
6.2.1.4;2.1.4 Organic-Based Nanomaterials (Biomaterials);57
6.2.2;2.2 Nanomaterial Production;57
6.2.3;2.3 Transport, Distribution, and the Fate of Nanomaterials in the Environment;58
6.3;3 Plants;58
6.3.1;3.1 Nonvascular Plants;61
6.3.2;3.2 Vascular Plants;61
6.3.2.1;3.2.1 Tissues;61
6.3.2.2;3.2.2 Seeds;65
6.3.2.3;3.2.3 Germination;66
6.3.3;3.3 Associations with Microorganisms;67
6.3.4;3.4 Plant Stress Response Mechanisms;68
6.4;4 Plant Nanotoxicology;68
6.4.1;4.1 Uptake of Nanomaterials in Plant Tissues;69
6.4.2;4.2 Toxic Effects of Nanomaterials on Plants;71
6.5;5 Nanotoxicological Evaluation Techniques in Plants;71
6.6;6 Conclusions;77
6.7;References;78
7;Chapter 4: Carbon Nanotubes as Plant Growth Regulators: Prospects;87
7.1;1 Introduction;88
7.2;2 Classification of the CNTs and Their Main Characteristics;88
7.2.1;2.1 Classification of the CNT According to the Wall Structure;89
7.2.2;2.2 Classification of the SWCNT by Carbon Configuration;89
7.2.3;2.3 Characteristics;91
7.3;3 Repository, Movement, Fate, and Bioavailability of Natural or Engineering CNTs in the Environment;92
7.3.1;3.1 Effects and Fate of CNTs in Plants;92
7.3.2;3.2 Release of CNTs;94
7.4;4 Main Uses of CNTs in the Agriculture Sector;95
7.4.1;4.1 Fertilizers;96
7.4.2;4.2 Pesticide;98
7.4.3;4.3 Other Concerns;99
7.5;5 Uptake, Transport, and Accumulation of CNTs in Plant Cells;99
7.6;6 Beneficial and Harmful Effects of CNTs in Plants;103
7.7;7 Effects of CNTs on Soils and Their Organisms;110
7.8;8 Conclusion;114
7.9;References;115
8;Chapter 5: Nanobiosensors for Bioclinical Applications: Pros and Cons;126
8.1;1 Introduction;126
8.2;2 Nanotechnology as a Revolution in Biosensor Design;127
8.2.1;2.1 Carbon-Based Nanomaterials;130
8.2.1.1;2.1.1 Carbon Nanotubes;130
8.2.1.2;2.1.2 Graphene;131
8.2.2;2.2 Metal Nanoparticles;133
8.2.3;2.3 Titanium Dioxide Nanotubes;134
8.2.4;2.4 Zinc Oxide Nanoparticles;134
8.3;3 Immobilization Strategies at the Nanoscale;134
8.4;4 Nanomaterials as Mediators;137
8.5;5 Nanomaterials as Signal Amplifiers;138
8.6;6 Nanomaterials for Bioreceptor Labelling;140
8.7;7 Nanomaterials to Project Microfluidics, Lab-on-a-Chip and Point-of-Care;141
8.8;8 Nanoelectronics;143
8.9;9 Nanoparticle Toxicity;145
8.10;10 Green Nanomaterials;146
8.11;11 Conclusions;149
8.12;References;150
9;Chapter 6: Stimuli-Responsive Nano-Drug Delivery Systems for Cancer Therapy;159
9.1;1 Introduction;159
9.2;2 Stimuli-Used for Trigger Drug Release;160
9.3;3 Internal Stimuli-Responsive Drug Delivery Systems;160
9.3.1;3.1 pH-Responsive Drug Delivery System;160
9.3.2;3.2 Redox-Responsive Drug Delivery System;162
9.3.3;3.3 Enzyme-Responsive Drug Delivery Systems;164
9.4;4 Exogenous Stimuli-Responsive Drug Delivery System;165
9.4.1;4.1 Thermo-responsive Drug Delivery System;165
9.4.2;4.2 Photo-/Light-Responsive Drug Delivery System;165
9.4.3;4.3 Magnetic-Responsive Drug Delivery System;166
9.4.4;4.4 Ultrasound-Responsive Drug Delivery System;166
9.5;5 Dual- and Multi-responsive Drug Delivery System;166
9.6;6 Conclusion and Future Prospects;168
9.7;References;168
10;Chapter 7: Plant-Mediated Synthesis of Silver and Gold Nanoparticles for Antibacterial and Anticancer Applications;171
10.1;1 Introduction: Integration of Biology and Nanotechnology;171
10.2;2 Approaches of Synthesis;172
10.3;3 Plant-Derived Biosynthesis of Silver and Gold Nanoparticles;175
10.4;4 Techniques for Characterization of Nanoparticles;181
10.5;5 Plant-Derived Silver and Gold Nanoparticles as Antibacterial Agents;181
10.6;6 Antibacterial Modes of Action of p-AgNPs and p-AuNPs;184
10.7;7 Cytotoxic Studies of p-AgNPs and p-AuNPs;185
10.8;8 Conclusion;187
10.9;References;187
11;Chapter 8: Challenges in Nanobiosensor Aiming Bioscience Applications;195
11.1;1 Introduction;195
11.2;2 pH Sensing Theory;198
11.3;3 pH Sensitivity and Linearity;200
11.4;4 Measurement Processes of pH Sensing;200
11.5;References;201
12;Chapter 9: Topical Delivery of Drugs for Skin Disease Treatment: Prospects and Promises;204
12.1;1 Introduction;204
12.2;2 Plant-Based Green Synthesis of Nanoparticles;206
12.3;3 Protein-Based Drug Delivery System;207
12.4;4 The Recent Development of Topical Delivery on Skin;210
12.5;5 How Nanoparticles Used as Drug Delivery System? Nanoparticles Are Used as Drug Delivery System?;212
12.6;6 Application of Nanoparticles Used in Various Fields;214
12.7;7 Conclusion and Future Prospects;215
12.8;References;216
13;Chapter 10: Biosynthesis of Nanoparticles and Their Potential Application in Food and Agricultural Sector;220
13.1;1 Introduction;220
13.2;2 Biosynthesis of Nanoparticles;222
13.3;3 Biosynthesis of Nanoparticle Through Plants;223
13.4;4 Biosynthesis of Nanoparticle Through Bacteria;225
13.5;5 Biosynthesis of Nanoparticle Through Yeast;226
13.6;6 Status on Food Nanotechnology;226
13.7;7 Status on Agriculture Nanotechnology;227
13.8;8 Toxicological Fundamentals and Risk Assessment;227
13.9;9 Future Prospects and Conclusion;228
13.10;References;228
14;Chapter 11: Nanoparticles in Biomedical Applications;233
14.1;1 Introduction;233
14.2;2 Applications of Nanoparticles;235
14.3;3 Role of Nanotechnology in Biomedical Applications;236
14.3.1;3.1 In Drug Delivery;236
14.3.2;3.2 Biosensing/Immunosensing;238
14.3.3;3.3 Bioimaging;239
14.3.4;3.4 In Therapeutics;241
14.3.5;3.5 The Radiotherapy;243
14.3.6;3.6 In Diagnosis;244
14.3.7;3.7 Animal Cell Culture;244
14.3.8;3.8 Tissue and Implant Engineering;245
14.3.8.1;3.8.1 Alteration of Biomaterial Surfaces by Nanotechnology;245
14.3.8.2;3.8.2 Alteration of Surface Topographically;246
14.3.8.3;3.8.3 Introduction of Nanoscale Chemical Molecules on a Surface;246
14.3.9;3.9 Antimicrobial Effects;247
14.3.10;3.10 Scaffolds Based on Nanomaterials;247
14.4;4 Conclusion;249
14.5;References;249
15;Chapter 12: Nanoparticles and Their Applications in DNA Technology;257
15.1;1 Introduction;257
15.2;2 Structure and Function of DNA;258
15.3;3 DNA Nanotechnology;259
15.3.1;3.1 Structural DNA Nanotechnology;260
15.3.1.1;3.1.1 G-quadruplexes and Z-DNA;261
15.3.1.2;3.1.2 I-motifs;261
15.3.1.3;3.1.3 Catenanes;262
15.3.1.4;3.1.4 Aptamers;262
15.3.1.5;3.1.5 DNAzymes;262
15.3.1.6;3.1.6 DNA Origami;263
15.3.2;3.2 Dynamic DNA Nanotechnology;263
15.3.2.1;3.2.1 DNA Actuators;264
15.3.2.2;3.2.2 DNA Walkers;264
15.3.2.3;3.2.3 DNA Origami Machines;264
15.4;4 Nanoparticles and DNA;265
15.4.1;4.1 Nanoparticles Integrated into DNA Structures;265
15.4.2;4.2 Nanoparticles Integrated into or Templated by DNA;265
15.4.2.1;4.2.1 Gold Nanoparticles;266
15.4.2.2;4.2.2 Silver Nanoparticles;267
15.4.2.3;4.2.3 Copper, Platinum, and Palladium Nanoparticles;268
15.4.2.4;4.2.4 Magnetic Nanoparticles;270
15.4.2.5;4.2.5 Quantum Dots;270
15.4.2.6;4.2.6 Other DNA-Based Nanosystems;271
15.4.2.7;4.2.7 Biodegradable and Metal DNA Nanoparticles for Transfection;271
15.5;5 Conclusion and Future Perspective;273
15.6;References;273
16;Chapter 13: Nanoparticles on Photosynthesis of Plants: Effects and Role;278
16.1;1 Introduction;278
16.2;2 Nanoparticles and Its Effects on Plant System;280
16.3;3 Influence of Nanoparticles on Photosynthesis;282
16.4;4 Different Nanoparticles Affecting Plant Photosynthesis;283
16.4.1;4.1 Metallic Nanoparticle;285
16.4.2;4.2 Nonmetallic Nanoparticle;287
16.5;5 Conclusion;287
16.6;References;288
17;Chapter 14: Biomedical Applications of Nanoparticles Synthesized from Mushrooms;293
17.1;1 Introduction;293
17.2;2 Mushroom-Mediated Synthesis of Metallic NPs;294
17.2.1;2.1 Silver Nanoparticles;294
17.2.2;2.2 Gold Nanoparticles;294
17.2.3;2.3 Selenium Nanoparticles;295
17.2.4;2.4 Iron Nanoparticles;295
17.2.5;2.5 Zinc Sulfide Nanoparticles;295
17.2.6;2.6 Cadmium Sulfide Nanoparticles;296
17.3;3 Biomedical Applications of Mushroom NPs;296
17.3.1;3.1 Antibacterial Activity;296
17.3.2;3.2 Antifungal Activity;299
17.3.3;3.3 Antioxidant Activity;301
17.3.4;3.4 Anticancer Activity;301
17.4;4 Conclusion and Future Prospects;303
17.5;References;303
18;Chapter 15: Green Synthesis of Nanoparticles by Mangrove Plants and Its Biomedical Application;308
18.1;1 Introduction;308
18.2;2 Biomedical Application of Green Synthesized Nanoparticles;313
18.2.1;2.1 Drug Delivery;313
18.2.2;2.2 Bioimaging;314
18.2.3;2.3 Biosensors and Labeling;314
18.2.4;2.4 Medicine and Dentistry;315
18.3;3 Synthesis of Nanoparticles by Mangroves and Their Application;316
18.4;4 Conclusion;317
18.5;References;318
19;Chapter 16: Nanoemulsion Formulation as an Effective Therapeutic Drug Delivery System in Diabetes Mellitus;320
19.1;1 Introduction;320
19.2;2 Nanoemulsion and Drug Delivery;321
19.3;3 Nanoemulsion, Its Preparation, and Applications as Drug Delivery;322
19.4;4 Diabetes Mellitus (DM);323
19.5;5 Applications of NE as Therapeutics in DM;325
19.6;6 Conclusion and Challenges;329
19.7;References;330
20;Chapter 17: Synthesis of Pigment-Mediated Nanoparticles and Its Pharmacological Applications;333
20.1;1 Introduction;334
20.2;2 Microbial Pigments;334
20.3;3 Nanoparticle Synthesis;336
20.4;4 Different Methods of Metallic Nanoparticle Synthesis;336
20.5;5 Pharmacological Applications of Pigment-Mediated Metallic Nanoparticles;337
20.6;6 Antibacterial Activities of Metallic Nanoparticles;337
20.7;7 Antifungal Activities of Metallic Nanoparticles;339
20.8;8 Anti-Inflammatory Activities of Metallic Nanoparticles;339
20.9;9 Anticancer Activity on Pigment-Mediated Nanoparticles;340
20.10;10 Antioxidant Mechanisms of Pigment-Mediated Nanoparticles;340
20.11;11 Factors Influencing Synthesis of Pigment-Mediated Nanoparticles;341
20.11.1;11.1 Method;341
20.11.2;11.2 pH Effect;341
20.11.3;11.3 Temperature Influence;342
20.11.4;11.4 Time;342
20.11.5;11.5 Particle Shape and Size;342
20.11.6;11.6 Concentration;343
20.11.7;11.7 Zeta Potential;343
20.11.8;11.8 Environment;343
20.12;12 Challenges in Nanotechnology;343
20.13;13 Conclusions;344
20.14;References;344
21;Chapter 18: Nanotechnology and Its Role in Malaria Treatment;349
21.1;1 Introduction;349
21.1.1;1.1 Nanotechnology;350
21.2;2 Role of Nanotechnology in Malaria Treatment;351
21.2.1;2.1 Lipid-Based Nanoparticles;351
21.2.2;2.2 Nucleic Acid–Based Nanotherapy;353
21.2.3;2.3 Protein-Based Nanotechnology for Malaria Treatment;353
21.2.4;2.4 Green Nanotechnology for the Therapy of Malaria;354
21.2.5;2.5 Nanotechnology for the Control of Malaria Vectors;355
21.3;3 Nanotechnology and Its Limitations;355
21.4;4 Conclusion;356
21.5;References;357
22;Chapter 19: Plant-Mediated Synthesis of Metal Oxide Nanocomposites for Environmental Remediation;361
22.1;1 Introduction;361
22.2;2 Multifunctional Activities of Plant-Mediated Synthesized Metal Oxide Nanocomposites Towards Pollution Abatement;363
22.2.1;2.1 Degradation of Toxic Dyes;363
22.2.2;2.2 Degradation of Toxic Elements Present in Water Other Than Dyes;366
22.2.3;2.3 Biosynthesized Metal Oxide Nanocomposites as Sensors;367
22.2.4;2.4 Biosynthesized Metal Oxide Nanocomposites as Adsorbents;367
22.3;3 Conclusion and Future Prospects;368
22.4;References;368
23;Chapter 20: Actinobacterial Nanoparticles: Green Synthesis, Evaluation and Applications;372
23.1;1 Introduction;372
23.2;2 Nanoparticles: Different Types;374
23.3;3 Actinobacterial Nanoparticle Biosynthesis;374
23.3.1;3.1 Extracellular Synthesis of Actinobacterial Nanoparticles;375
23.3.2;3.2 Intracellular Synthesis of Actinobacterial Nanoparticles;376
23.4;4 Characterisation and Evaluation of Actinobacterial Nanoparticles;377
23.5;5 Applications;378
23.5.1;5.1 Antibacterial Properties;379
23.5.2;5.2 Antifungal Properties;379
23.5.3;5.3 Anti-biofouling Properties;380
23.5.4;5.4 Antioxidative Properties;380
23.5.5;5.5 Anti-parasitic Properties;380
23.5.6;5.6 Anti-malarial Properties;380
23.5.7;5.7 Anticancerous Properties;381
23.5.8;5.8 Biosensing Properties;381
23.6;6 Conclusion;381
23.7;References;382
24;Index;386



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.