Pato | Pseudo-Hermitian Random Matrices | Buch | 978-3-031-60293-1 | sack.de

Buch, Englisch, 178 Seiten, HC runder Rücken kaschiert, Format (B × H): 160 mm x 241 mm, Gewicht: 465 g

Pato

Pseudo-Hermitian Random Matrices

Buch, Englisch, 178 Seiten, HC runder Rücken kaschiert, Format (B × H): 160 mm x 241 mm, Gewicht: 465 g

ISBN: 978-3-031-60293-1
Verlag: Springer Nature Switzerland


This book is a comprehensive guide to pseudo-Hermitian random matrices, their properties, and their role in many models that are relevant to physical processes. The book starts by showing how the concept of pseudo-Hermiticity emerged from studies of PT-symmetric systems which aroused the interest of the random matrix theory community. The chapters that follow discuss the consequences of the pseudo-Hermitian condition to the eigen-decomposition of non-Hermitian matrices, and an investigation of pseudo-Hermitian random matrices in tridiagonal form, discussing the scenario with real eigenvalues, and the appearance of complex eigenvalues generated by unbound and non-positive metrics. Subsequently, the author introduces pseudo-Hermitian Gaussian matrices and their properties including characteristic polynomials, and statistical properties of their eigenvalues. Finally, in the last chapter, the time invariance of the metric is upended and a pseudo-Hermitian model with a time dependent metricis constructed to discuss the time evolution of entangled states.
Pato Pseudo-Hermitian Random Matrices jetzt bestellen!

Zielgruppe


Research


Autoren/Hrsg.


Weitere Infos & Material


Chapter 1 Introduction.- Chapter 2 The pseudo-Hermitian condition.- Chapter 3 Pseudo-Hermitian b-Hermite ensemble with real eigenvalues1.- Chapter 4 Pseudo-Hermitian ??-Hermite ensemble with an unbound metric2.- Chapter 5 Pseudo-Hermitian ??-Hermite ensemble with an unbound metric.- Chapter 6 Pseudo-Hermitian b-Laguerre ensemble with real eigenvalues3.- Chapter 7 Pseudo-Hermitian b-Laguerre ensemble with unbound metric.- Chapter 8 Pseudo-Hermitian ??-Laguerre ensemble with non-positive metric.- Chapter 9 The pseudo-Hermitian ??-Jacobi ensemble4.- Chapter 10 Pseudo-Hermitian Gaussian matrices5.- Chapter 11 Pseudo-Hermitian anti-Hermitian Gaussian matrices6.- Chapter 12 Average characteristic polynomials7.- Chapter 13 Spectral properties of pseudo-Hermitian matrices8.- Chapter 14 Eigenvalues as quasi-particles.- Chapter 15 Entanglement of pseudo-Hermitian random states9.


Mauricio Porto Pato is a Senior Professor at the University of São Paulo with a large experience in the field of random matrices theory and applications. In the early 90's, in a collaboration with the nuclear physicist M. S. Hussein, he began a study of random matrices that resulted in the construction of an ensemble to be applied to a situation of partial conservation of a quantum number. The model was then, successfully, applied to the description of isospin data. In a collaboration with O. Bohigas, another important contribution of him to be highlighted, was the formalism to deal with missing levels in correlated spectra, a study that evolved from his work with the experimentalist G. E. Mitchell. About ten years ago, his interest moved from Hermitian to non-Hermitian operators and this led to his involvement with the studies of the class of pseudo-Hermitian matrices associated to PT-symmetric systems, that is, systems invariant under parity and time-reversal transformations. This investigation started with the introduction of the pseudo-Hermiticity condition in the sparse tridiagonal matrices of the so-called beta-ensembles of the random matrix theory. Next, the pseudo-Hermiticity condition was extended to the standard Gaussian matrices with the creation of the pseudo-Hermitian Gaussian ensembles. All this effort, along a decade, comprises about one dozen of works among articles and thesis.


Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.