Buch, Englisch, 284 Seiten, Format (B × H): 183 mm x 260 mm, Gewicht: 734 g
A Statistical Physics Approach
Buch, Englisch, 284 Seiten, Format (B × H): 183 mm x 260 mm, Gewicht: 734 g
ISBN: 978-0-521-82698-3
Verlag: Cambridge University Press
This book, first published in 2004, describes the application of statistical physics and complex systems theory to the study of the evolution and structure of the Internet. Using a statistical physics approach the Internet is viewed as a growing system that evolves in time through the addition and removal of nodes and links. This perspective permits us to outline the dynamical theory required for a description of the macroscopic evolution of the Internet. The presence of such a theoretical framework appears to be a revolutionary and promising path towards our understanding of the Internet and the various processes taking place on this network, including, for example, the spread of computer viruses or resilience to random or intentional damages. This book will be of interest to graduate students and researchers in statistical physics, computer science and mathematics studying in this subject.
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik EDV | Informatik Informatik
- Mathematik | Informatik Mathematik Mathematik Interdisziplinär Systemtheorie
- Naturwissenschaften Physik Angewandte Physik Statistische Physik, Dynamische Systeme
- Interdisziplinäres Wissenschaften Wissenschaften: Forschung und Information Kybernetik, Systemtheorie, Komplexe Systeme
Weitere Infos & Material
Preface; List of abbreviations; 1. A brief history of the Internet; 2. How the Internet works; 3. Measuring the global Internet; 4. The Internet's large-scale topology; 5. Modeling the Internet; 6. Internet robustness; 7. Virtual and social networks in the Internet; 8. Searching and walking on the Internet; 9. Epidemics in the Internet; 10. Beyond the Internet's skeleton: traffic and global performance; 11. Outlook; Appendix I: graph theory applied to topology analysis; Appendix II: interface resolution and router topology; Appendix III: numerical analysis of heavy-tailed distributions; Appendix IV: degree correlations; Appendix V: scale-free networks: scaling relations; Appendix VI: the SIR model of virus propagation; References; Index.