E-Book, Englisch, Band 48, 507 Seiten, eBook
E-Book, Englisch, Band 48, 507 Seiten, eBook
Reihe: Lecture Notes in Civil Engineering
ISBN: 978-3-030-29779-4
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark
Zielgruppe
Research
Autoren/Hrsg.
Weitere Infos & Material
1;Preface;6
2;Contents;8
3;Sustainable Pavements and Environmentally Friendly Technologies;13
4;Effectiveness of Rejuvenators for Asphalt Mixtures with High Reclaimed Asphalt Pavement Content in Cold Climates;14
4.1;Abstract;14
4.2;1 Introduction;14
4.3;2 Research Objectives;15
4.4;3 Materials;16
4.4.1;3.1 Aggregates, Bitumen and Additives;16
4.4.2;3.2 Mixtures;17
4.5;4 Methods;18
4.5.1;4.1 Samples Preparation;18
4.5.2;4.2 Testing Methods;19
4.6;5 Test Results and Discussion;19
4.6.1;5.1 Compactability and Indirect Tensile Stiffness;19
4.6.2;5.2 Flexural Stiffness;20
4.6.3;5.3 Strength and Moisture Resistance;20
4.6.4;5.4 Resistance to Repeated Loading;22
4.7;6 Conclusions;22
4.8;References;23
5;Micromechanical Surface Investigation of Bio-modified RAP Binder;25
5.1;Abstract;25
5.2;1 Introduction;25
5.3;2 Materials and Methods;27
5.3.1;2.1 Rejuvenation Procedure;27
5.3.2;2.2 Dynamic Shear Rheometer;27
5.3.3;2.3 Force Mapping;28
5.4;3 Results and Discussion;28
5.4.1;3.1 Rheological Analysis;28
5.4.2;3.2 Nano-Mechanical Mapping;30
5.5;4 Conclusions;31
5.6;Acknowledgements;32
5.7;References;32
6;New Fluxing Agent for the Road Industry – An Overview of Technical Performances and HSE Benefits;34
6.1;Abstract;34
6.2;1 Introduction;34
6.3;2 New Generation of Fluxing Agents with Advantageous HSE Profile;35
6.4;3 Surface Dressing Applications;38
6.4.1;3.1 Anhydrous Fluxed Bitumen Results;38
6.4.2;3.2 Fluxed Bitumen Emulsions Results;39
6.5;4 Microsurfacing;40
6.5.1;4.1 Flux Oil for Early and Late-Season Microsurfacing Applications;40
6.5.2;4.2 Lab Test Results;41
6.6;5 Conclusions;42
6.7;References;43
7;Towards a Better Assessment of Recycling Agents Effects on Bitumen During Hot Recycling;44
7.1;Abstract;44
7.2;1 Introduction;44
7.3;2 Materials and Methods;45
7.3.1;2.1 Materials;45
7.3.2;2.2 Dynamic Shear Rheometer;47
7.3.3;2.3 Bending Beam Rheometer;47
7.4;3 Results and Discussions;48
7.5;4 Conclusions;53
7.6;Acknowledgements;53
7.7;References;54
8;Graphene-Enhanced Recycled Asphalt Pavements;55
8.1;Abstract;55
8.2;1 Introduction;55
8.3;2 GESM Chemical Formulation;57
8.4;3 Asphalt Concrete Preliminary Tests;58
8.4.1;3.1 Physical Analysis – Voids Content;58
8.4.2;3.2 Mechanical Analysis – Indirect Tensile Strength (ITS);59
8.4.3;3.3 Dynamic Tests - Stiffness Modulus;59
8.4.4;3.4 Dynamic Tests – Rutting;59
8.4.5;3.5 Dynamic Tests – Fatigue Endurance;60
8.5;4 Trial Section – Rome;60
8.5.1;4.1 Description of Trial Section;60
8.5.2;4.2 Trial Section Preliminary in Situ Test Results;62
8.5.3;4.3 Trial Section Preliminary Results in Laboratory;62
8.6;5 Conclusion;64
8.7;Acknowledgements;64
8.8;References;65
9;Properties of Asphalt Binders with Increasing SBS Polymer Modification;66
9.1;Abstract;66
9.2;1 Introduction;66
9.3;2 Asphalt Binder Preparation and Testing;67
9.4;3 Results and Discussion;70
9.5;4 Conclusions;75
9.6;References;76
10;Non- petroleum- Based Binders for Paving Applications: Rheological and Chemical Investigation on Ageing Effects;78
10.1;Abstract;78
10.2;1 Introduction;78
10.3;2 Materials and Methods;79
10.4;3 Results and Discussion;80
10.4.1;3.1 Rheological Tests;80
10.4.2;3.2 Chemical Analyses;83
10.5;4 Conclusions;85
10.6;References;86
11;Investigation into the Use of Reclaimed Asphalt Pavement in Asphalt Concrete;88
11.1;Abstract;88
11.2;1 Introduction;88
11.3;2 Materials and Methods;90
11.3.1;2.1 Materials;90
11.3.2;2.2 Methods;91
11.3.2.1;2.2.1 Experimental Procedures;91
11.4;3 Results and Discussions;93
11.4.1;3.1 Particle Size Distribution;93
11.4.2;3.2 Results of Marshall Test;93
11.5;4 Conclusions;96
11.6;References;97
12;Rheological and Mechanical Properties of HMA Containing Fly Ashes as Alternative Filler;99
12.1;Abstract;99
12.2;1 Introduction and Literature Review;99
12.3;2 Materials;100
12.3.1;2.1 Fly Ash Filler;100
12.3.2;2.2 Bitumen;101
12.4;3 Experimental Research;101
12.4.1;3.1 Mastic Rheological Phase;101
12.4.2;3.2 Asphalt Concrete Phase;104
12.5;4 Results and Conclusions;107
12.6;References;108
13;Future Trends in Asphalt Pavements;109
14;Preliminary Study of an Energy Harvesting System for Road Pavements Made with Marginal Aggregate;110
14.1;Abstract;110
14.2;1 Introduction;110
14.3;2 Materials and Samples Preparation;112
14.4;3 Test Methods;114
14.5;4 Results and Discussion;117
14.6;5 Conclusions;121
14.7;References;121
15;Electric Energy Harvesting Systems from Urban Road Pavements: Analysis and Preliminary Simulation;123
15.1;Abstract;123
15.2;1 Introduction;123
15.3;2 Road Energy Harvesting;124
15.3.1;2.1 Piezoelectric Technology;124
15.3.2;2.2 Photovoltaic Technology;126
15.4;3 Simulation;126
15.4.1;3.1 Piezoelectric System Output;127
15.4.2;3.2 Photovoltaic System Output;128
15.5;4 Conclusions;130
15.6;References;130
16;Environmental Sustainability and Energy Assessment of Bituminous Pavements Made with Unconventional Materials;132
16.1;Abstract;132
16.2;1 Introduction;132
16.3;2 Sustainable Asphalt Materials and Technologies: Strengths and Weaknesses;133
16.4;3 Energy and Carbon Footprint of Different Road Pavement Solutions;134
16.4.1;3.1 Goal and Scope Definition;134
16.4.2;3.2 Functional Unit and System Boundary;135
16.4.3;3.3 Scenario Definition for the Asphalt Pavement;135
16.4.4;3.4 Life Cycle Inventory and Data Quality;136
16.4.5;3.5 Life Cycle Energy and Environmental Impact Assessment Results;137
16.5;4 Conclusions;140
16.6;References;140
17;Reflectivity and Durability Assessment of Solar Heat-Blocking Pavement;142
17.1;Abstract;142
17.2;1 Introduction;142
17.3;2 Solar Heat-Blocking Pavement;143
17.3.1;2.1 Basic Concept;143
17.3.2;2.2 Application Procedure;143
17.4;3 Performance Testing;144
17.4.1;3.1 Reflectivity;144
17.4.2;3.2 Retro-Reflection;145
17.4.3;3.3 Laboratory Lamp Test;145
17.4.4;3.4 Torque Resistance;146
17.4.5;3.5 Ravelling Test;147
17.4.6;3.6 Accelerated Wear Test;148
17.4.7;3.7 Aggregate Pop-Out;149
17.5;4 Performance in the Field;150
17.5.1;4.1 Reduction in Surface Temperature;150
17.5.2;4.2 Improvement of Pavement Durability;150
17.6;5 Conclusions;151
17.7;References;151
18;Supply Curves Using LCA and LCCA for Conceptual Evaluation of Proposed Policies to Improve the Environment;153
18.1;Abstract;153
18.2;1 Introduction;153
18.3;2 The Approach;155
18.4;3 Applications in Studies Currently Underway;159
18.5;4 Summary and Conclusions;160
18.6;Acknowledgements;161
18.7;References;161
19;Marginal Materials for Asphalt Pavements;162
20;Cold Recycling with Bitumen Emulsion of Marginal Aggregates for Road Pavements;163
20.1;Abstract;163
20.2;1 Introduction;163
20.3;2 Materials;164
20.3.1;2.1 Environmental Analysis of the Marginal Materials;164
20.3.2;2.2 Physical-Mechanical Characterization of the Marginal Materials;165
20.4;3 Mixtures;167
20.4.1;3.1 Composition and Grading Curves of the Mixes;167
20.4.2;3.2 Optimization of the Mixtures;168
20.5;4 Performance Characterization;169
20.5.1;4.1 Stiffness Characterization;169
20.5.2;4.2 Permanent Deformation Analysis;170
20.6;5 Conclusions;171
20.7;References;171
21;Experimental Investigation of Performance Properties of Asphalt Mixture Designed with the Re-recycled RAP and EAFSS;172
21.1;Abstract;172
21.2;1 Introduction;173
21.3;2 Materials and Experimentation;174
21.3.1;2.1 Material Preparations;174
21.3.2;2.2 Fatigue Testing;174
21.3.3;2.3 Low Temperature Creep and Fracture Testing;175
21.4;3 Results and Analysis;176
21.4.1;3.1 Fatigue Behavior;176
21.4.2;3.2 Low Temperature Creep and Fracture Tests Results;177
21.5;4 Summary and Conclusions;179
21.6;Acknowledgments;179
21.7;References;180
22;Influence of Crumb Rubber Added by Dry Process on Linear Viscoelastic Properties and Tensile Strength of Bituminous Mixtures;182
22.1;Abstract;182
22.2;1 Introduction;182
22.3;2 Tested Materials;183
22.4;3 Experimental Procedures and Modelling;184
22.4.1;3.1 Complex Modulus Tests;184
22.4.2;3.2 2S2P1D Model;185
22.4.3;3.3 Direct Tensile Tests;186
22.5;4 Results and Analysis;186
22.5.1;4.1 Complex Modulus;186
22.5.2;4.2 Tensile Strength;188
22.6;5 Conclusions;189
22.7;Acknowledgements;189
22.8;References;189
23;A Preliminary Investigation into the Use of Alkali-Activated Blast Furnace Slag Mortars for High-Performance Pervious Concrete Pavements;191
23.1;Abstract;191
23.2;1 Introduction;191
23.3;2 Materials and Methods;192
23.4;3 Results and Discussion;196
23.5;4 Conclusions;198
23.6;Acknowledgements;199
23.7;References;199
24;Experimental Study on Use of Recycled Polymer as Modifier in Mastic and Asphalt Mixture;201
24.1;Abstract;201
24.2;1 Introduction;201
24.3;2 Material and Methodology;202
24.3.1;2.1 Aggregates;202
24.3.2;2.2 Bitumen;203
24.3.3;2.3 Fillers;203
24.3.4;2.4 PB25 Polymer;204
24.3.5;2.5 Mixture and Mastic Proportions;204
24.4;3 Experimental Work;205
24.4.1;3.1 Asphalt Mixture Tests;205
24.4.2;3.2 Mastic Tests;205
24.5;4 Results and Discussion;206
24.5.1;4.1 Volumetric Analysis;206
24.5.2;4.2 Stiffness Properties;206
24.5.3;4.3 Permanent Deformation Evaluation;207
24.5.4;4.4 Rheological Properties;208
24.6;5 Conclusions;210
24.7;References;210
25;Preliminary Study on the Mechanical Properties of an Asphalt Mixture Containing RAR Modifiers;212
25.1;Abstract;212
25.2;1 Background and Objectives;212
25.3;2 Materials Tested;214
25.3.1;2.1 Design Mixture;214
25.3.2;2.2 RAR Modifier;215
25.4;3 Research Methodology;215
25.4.1;3.1 Mixture Preparation;215
25.4.2;3.2 Mixture Compaction;216
25.4.3;3.3 Production of Test Specimens;216
25.4.4;3.4 Specimen Testing;217
25.5;4 Testing Results and Analysis;218
25.5.1;4.1 Compaction Results;218
25.5.2;4.2 Modulus Results;218
25.6;5 Conclusions;220
25.7;References;220
26;Influence of the Production Temperature on the Optimization Process of Asphalt Mixes Prepared with Steel Slag Aggregates Only;222
26.1;Abstract;222
26.2;1 Introduction;222
26.3;2 Background and Goal;223
26.4;3 Materials and Mixes;224
26.5;4 Test Methods;225
26.5.1;4.1 Volumetric Properties Assessment;225
26.5.2;4.2 Mechanical Characterization;225
26.5.3;4.3 Durability Evaluation;225
26.6;5 Experimental Findings;225
26.6.1;5.1 Volumetric Characteristics;225
26.6.2;5.2 Mechanical Properties;227
26.6.3;5.3 Durability;227
26.7;6 Conclusions and Further Studies;229
26.8;Acknowledgements;230
26.9;References;230
27;Long-Term Aging Behaviour of Asphalt Mixtures Modified with Crumb Rubber Using the Dry Process;232
27.1;Abstract;232
27.2;1 Introduction;232
27.3;2 Experimental Design;234
27.3.1;2.1 Asphalt Mix Manufacture and Characterization;234
27.3.2;2.2 Aging Methodology;235
27.4;3 Results and Discussion;236
27.5;4 Conclusions;238
27.6;Acknowledgements;238
27.7;References;239
28;Hot, Warm and Cold Recycling;241
29;100% Recycling of Low-Temp Asphalt for Minor Roads – Lab Compaction and Traffic Simulation;242
29.1;Abstract;242
29.2;1 Introduction;242
29.3;2 Objective;243
29.4;3 Material;243
29.5;4 Testing;244
29.5.1;4.1 Compaction of Laboratory Small Size Specimens;244
29.5.2;4.2 Compaction of Medium Size Specimens;247
29.5.3;4.3 Rutting Testing with Laboratory Scaled Mobile Traffic Simulator;249
29.5.4;4.4 Rutting Testing with Large Wheel Rutting Tester;250
29.6;5 Conclusions;251
29.7;References;252
30;Impacts of Recycling Agent on Superpave Mixture Containing RAP;253
30.1;Abstract;253
30.2;1 Introduction;253
30.3;2 Materials and Methods;254
30.3.1;2.1 Materials;254
30.3.2;2.2 Methodology;254
30.4;3 Results and Discussions;256
30.4.1;3.1 Rejuvenator Dosage;256
30.4.2;3.2 Rutting;256
30.4.3;3.3 Fatigue;256
30.4.4;3.4 Mass Loss;257
30.4.5;3.5 Volumetric;257
30.4.6;3.6 Indirect Tensile Strength;259
30.4.7;3.7 Moisture Sensitivity/Tensile Strength Ratio (TSR);259
30.4.8;3.8 Rutting;259
30.4.9;3.9 Fatigue;260
30.5;4 Conclusion;261
30.6;Acknowledgements;261
30.7;References;261
31;Evaluation of Reliability of RILEM Fragmentation Test;263
31.1;Abstract;263
31.2;1 Introduction;263
31.3;2 Objective and Scope;264
31.4;3 Materials and Methods;265
31.4.1;3.1 The Fragmentation Test;265
31.5;4 Results and Discussions;266
31.6;5 Summary and Conclusions;269
31.7;References;270
32;Development of a Soybean-Based Rejuvenator for Asphalt Mixtures Containing High Reclaimed Asphalt Pavement Content;271
32.1;Abstract;271
32.2;1 Introduction;271
32.3;2 Mixture and Materials;272
32.4;3 Performance Tests;273
32.4.1;3.1 Viscoelastic Properties;273
32.4.2;3.2 Fatigue Resistance;274
32.4.3;3.3 Rutting Resistance;274
32.5;4 Results and Discussion;275
32.6;5 Summary and Conclusion;279
32.7;Acknowledgments;279
32.8;References;279
33;Effect of Water and Cement Content on the Mechanical Properties of Cold Recycled Mixtures (CRM) with Bitumen Emulsion;281
33.1;Abstract;281
33.2;1 Introduction;281
33.3;2 Materials and Methodology;282
33.3.1;2.1 Materials;282
33.3.2;2.2 Mixtures;283
33.4;3 Results Analysis;285
33.5;4 Conclusions;288
33.6;References;289
34;Sustainable Warm In-plant SMA Mixtures with 80% Recycling and Produced at 115 °C;290
34.1;Abstract;290
34.2;1 Introduction;290
34.3;2 LE2AP Mixture Designing Philosophy;291
34.3.1;2.1 LE2AP and LE2AP SMA;291
34.3.2;2.2 PA-stone;292
34.3.3;2.3 LE2AP Mortar;293
34.4;3 Laboratory Production and Performance;295
34.5;4 Full Scale Demonstration;297
34.6;5 Conclusions;299
34.7;Acknowledgements;299
34.8;References;299
35;Reclaimed Asphalt Usage: Handling, Processing, Management and Future Trends in Lithuania;301
35.1;Abstract;301
35.2;1 Introduction;301
35.3;2 RAP Handling and Processing;302
35.4;3 RAP Quality Determination;305
35.5;4 RAP Management;306
35.6;5 Conclusions;308
35.7;References;308
36;Experimental Study to Re-refine Aged Binder Using Water;310
36.1;Abstract;310
36.2;1 Introduction;310
36.3;2 Solvent Characteristics of High-Temperature and High-Pressure Water and the Aqueous Pyrolysis Method;311
36.4;3 Experimental Overview;312
36.4.1;3.1 Effects of Reaction Temperature and Reaction Time on Restoration Property;312
36.4.2;3.2 Characteristics of Restoration Property Effects Compared with the Conventional Method;314
36.5;4 Experimental Results;315
36.5.1;4.1 Effects of Reaction Temperature on Restoration Property;315
36.5.2;4.2 Effects of Reaction Time on Restoration Property;316
36.5.3;4.3 Characteristics of Restoration Effects Compared with the Conventional Method;317
36.6;5 Conclusions;318
36.7;References;319
37;Cold In-place Recycling for a Base Layer of an Italian High-Traffic Highway;320
37.1;Abstract;320
37.2;1 Introduction;320
37.3;2 Project Description;321
37.4;3 FWD Tests on the Subgrade;321
37.5;4 Design of the Pavement Structure;322
37.6;5 Mix Design of the CRAB Mixture;322
37.7;6 Construction of the Trial Section;323
37.8;7 Validation of the CRAB Mixture;325
37.8.1;7.1 Laboratory Tests on GC Specimens;325
37.8.2;7.2 Laboratory Tests on Cores;325
37.8.3;7.3 In Situ FWD Tests;327
37.9;8 Conclusion;327
37.10;References;328
38;Test Methods and Performance;330
39;Effect of Nano SiO2, TiO2 and ZnO Modification to Rheological Properties of Neat and Polymer Modified Bitumen;331
39.1;Abstract;331
39.2;1 Introduction;331
39.3;2 Background of Bitumen Modification with Nano Additives;332
39.4;3 Materials and Methods;334
39.4.1;3.1 Materials;334
39.4.2;3.2 Experimental Program Ant Methods;334
39.4.2.1;3.2.1 Bitumen Nano-Modification and Sample Preparation Method;334
39.4.2.2;3.2.2 Linear Amplitude Sweep Test (LAS) Method;335
39.4.2.3;3.2.3 Multi Stress Creep Recovery Test (MSCR) Method;336
39.5;4 Result Analysis;337
39.6;5 Conclusions;340
39.7;Acknowledgements;341
39.8;References;341
40;Impregnation of Lightweight Aggregate Particles with Phase Change Material for Its Use in Asphalt Mixtures;343
40.1;Abstract;343
40.2;1 Introduction;343
40.3;2 Materials and Methods;344
40.4;3 Results and Discussion;347
40.5;4 Conclusions and Recommendations;349
40.6;Acknowledgements;349
40.7;References;350
41;The Use of a Polyethylene-Based Modifier to Produce Modified Asphalt Binders on Site;352
41.1;Abstract;352
41.2;1 Introduction;352
41.3;2 Asphalt Mixture Cracking Behavior: HMA Fracture Mechanics;353
41.4;3 Materials;354
41.4.1;3.1 Polymer Compound;355
41.4.2;3.2 HMA Specimen Preparation;355
41.5;4 Results and Analysis;356
41.5.1;4.1 Resilient Modulus Test;356
41.5.2;4.2 Creep Compliance Test;356
41.5.3;4.3 Energy Limits Evaluation;358
41.6;5 Conclusion;360
41.7;References;361
42;Effect of Moisture on Fatigue Characteristics of Asphalt Concrete Mixtures;362
42.1;Abstract;362
42.2;1 Introduction;362
42.3;2 Experimental Investigation;364
42.4;3 Results and Discussions;367
42.5;4 Conclusion;371
42.6;5 Limitations and Scope for Future Study;371
42.7;References;371
43;A New Approach to Determine Absorption Water of Reclaimed Asphalt Pavement Aggregate (RAP) for the Production of Cold Recycled Mixtures (CRM);373
43.1;Abstract;373
43.2;1 Introduction;373
43.3;2 Materials and Methodology;374
43.3.1;2.1 Materials;374
43.3.2;2.2 Methodology;374
43.4;3 Results Analysis;378
43.5;4 Conclusions;380
43.6;References;381
44;Effect of Air Void Topology on the Hydraulic Conductivity and Clogging Properties of Pervious Asphalt Roads;382
44.1;Abstract;382
44.2;1 Introduction;382
44.3;2 Materials and Methods;384
44.3.1;2.1 Clogging Material Gradation;384
44.3.2;2.2 Asphalt Composition;384
44.3.3;2.3 Impression of Resin Blocks with Realistic Pore Geometries;385
44.3.4;2.4 Hydraulic Conductivity Measurements;385
44.3.5;2.5 Clogging Measurements;385
44.3.6;2.6 Measurement of Macroporosity, Pore Diameter, Euler Number and Tortuosity;386
44.4;3 Results and Discussion;386
44.4.1;3.1 Geometrical Properties of Air Voids;386
44.4.2;3.2 Hydraulic Conductivity of the Test Samples;386
44.4.3;3.3 Clogging of Porous Asphalt;386
44.4.4;3.4 Effect of the Air Void Topology on the Clogging Ratio;388
44.4.5;3.5 Distribution of the Clogs in the Asphalt Mixture;388
44.5;4 Conclusions;389
44.6;Acknowledgements;390
44.7;References;390
45;Fatigue Performance of Bituminous Binders Tested by Linear Amplitude Sweep Test;391
45.1;Abstract;391
45.2;1 Introduction;391
45.3;2 VECD - Viscoelastic Continuum Damage Theory;393
45.4;3 Highly Polymer Modified Binders - HiMA;394
45.5;4 Experimental;395
45.5.1;4.1 Materials and Test Methods;395
45.5.2;4.2 Influence of the Test Temperature on the Sample Damage Mechanism During LAS Test;396
45.5.3;4.3 Obtained Parameters and Discussion;396
45.6;5 Summary and Conclusions;398
45.7;Acknowledgements;399
45.8;References;399
46;Oxidative Aging Effects on Damage-Healing Performance of Unmodified and Polymer Modified Asphalt Binders;401
46.1;Abstract;401
46.2;1 Introduction;401
46.3;2 Objectives;403
46.4;3 Materials and Testing;403
46.4.1;3.1 Materials;403
46.4.2;3.2 Testing Methods;403
46.4.2.1;3.2.1 LAS Test;403
46.4.2.2;3.2.2 LASH Test;404
46.4.2.3;3.2.3 Chemical SARA Composition Test;405
46.5;4 Results and Discussions;405
46.5.1;4.1 LASH-Based Healing Performance;405
46.5.2;4.2 Comparison Between Rheological Healing Properties and Chemical Composition;406
46.6;5 Conclusion;408
46.7;Acknowledgements;408
46.8;References;409
47;Pavement Structures, Maintenance and Management;410
48;Performance Evaluation of Innovative and Sustainable Pavement Solutions for Road Tunnels;411
48.1;Abstract;411
48.2;1 Introduction;411
48.3;2 Pavement Cross Sections;412
48.4;3 Performance Evaluation of Pavement Solutions;413
48.4.1;3.1 Design Traffic;413
48.4.2;3.2 Design Temperatures;414
48.4.3;3.3 Mechanical Properties of Materials;415
48.4.4;3.4 Transfer Functions;416
48.4.5;3.5 Design Life;417
48.5;4 Conclusions;418
48.6;References;419
49;Fast Falling Weight Accelerated Pavement Testing and Laboratory Analysis of Asphalt Pavements Reinforced with Geocomposites;421
49.1;Abstract;421
49.2;1 Introduction;421
49.3;2 Experimental Program;422
49.3.1;2.1 Trial Section;422
49.3.2;2.2 Materials;423
49.3.3;2.3 Testing Program and Procedures;424
49.4;3 Results and Analysis;426
49.4.1;3.1 APT Tests;426
49.4.2;3.2 Laboratory Tests;430
49.5;4 Conclusions;433
49.6;Acknowledgements;433
49.7;References;433
50;Automatic Crack Detection Results Using a Novel Device for Survey and Analysis of Road Pavement Condition;435
50.1;Abstract;435
50.2;1 Introduction;435
50.3;2 The Novel Device for Pavement Condition Survey;437
50.4;3 Preliminary Crack Detection Results;438
50.5;4 Conclusions;443
50.6;References;443
51;Experimental Evaluation of Improving Effects of Thermal Environment of Water Retaining Pavement on Wheelchair Users;445
51.1;Abstract;445
51.2;1 Introduction;445
51.3;2 Materials and Methods;447
51.3.1;2.1 Material (Water Retentive Block);447
51.3.2;2.2 Methods;447
51.3.2.1;2.2.1 Human Thermal Load;447
51.3.2.2;2.2.2 Physical Quantities and Physiological Quantities;448
51.3.3;2.3 Verification in a Standing-Still Posture;449
51.3.3.1;2.3.1 Experiment in Artificial Climate Chamber;449
51.3.3.2;2.3.2 Experiment at Outdoor Test Pavement;450
51.4;3 Validation in a Wheelchair User (Sitting Posture);451
51.4.1;3.1 Outline of Experiment;451
51.4.2;3.2 Results;452
51.5;4 Summary;453
51.6;References;453
52;Airport Pavement Management Systems: An Open BIM Approach;454
52.1;Abstract;454
52.2;1 Introduction;454
52.3;2 BIM and the Information Management Process;456
52.4;3 Airport Pavement Management Systems;456
52.5;4 Lamezia Terme International Airport;458
52.6;5 Runway BIM Model;459
52.6.1;5.1 Geometry;459
52.6.2;5.2 Semantic Data;460
52.7;6 Interoperability Between a BIM Model and the APMS;461
52.8;7 Conclusions and Future Developments;462
52.9;References;463
53;Mixture Design for Recycled Porous Asphalt Pavement and Results of Follow-up Survey for Ten Years;464
53.1;Abstract;464
53.2;1 Introduction;464
53.3;2 Study Method;465
53.3.1;2.1 Materials Used and Mix Design;465
53.3.2;2.2 Test Construction;466
53.3.3;2.3 Survey Method for a Road that Has Been in Use;468
53.3.4;2.4 Rut Depth;468
53.3.5;2.5 Evenness;469
53.3.6;2.6 Tire-Pavement Noise;470
53.3.7;2.7 Texture Depth;471
53.3.8;2.8 Skid Resistance;471
53.4;3 Conclusions;472
53.5;Acknowledgements;473
53.6;References;473
54;Performance Related Quality Assurance in Pavement Construction;474
54.1;Abstract;474
54.2;1 Introduction;474
54.3;2 Database Selection;475
54.4;3 Structural Capacity and Performance;476
54.5;4 Impact on Residual Life and Maintenance;479
54.6;5 Economic Costs;480
54.7;6 Conclusions;482
54.8;References;483
55;The BIM (Building Information Modeling)-Based Approach for Road Pavement Maintenance;484
55.1;Abstract;484
55.2;1 Introduction;485
55.3;2 General Notes on the BIM-Based Approach for Infrastructures;486
55.4;3 Ideas and Preliminary Tests for Road Maintenance in an I-BIM Environment;489
55.5;4 Conclusions;492
55.6;Acknowledgements;493
55.7;References;493
56;A New Design Methodology for Improving Porous Concrete Properties to Achieve Multifunctional and Sustainable Pavements;495
56.1;Abstract;495
56.2;1 Introduction;495
56.3;2 Materials and Methods;496
56.3.1;2.1 Materials;496
56.3.2;2.2 PCD Methodology;497
56.3.3;2.3 Production;498
56.3.4;2.4 Tests;498
56.3.4.1;2.4.1 Permeability Test;498
56.3.4.2;2.4.2 Indirect Tensile Test;499
56.3.4.3;2.4.3 Compression Strength Test;499
56.4;3 Results and Discussion;499
56.4.1;3.1 Permeability Results;499
56.4.2;3.2 Indirect Tensile Test;500
56.4.3;3.3 Compression Strength Test;500
56.4.4;3.4 Multicriteria Decision Making Analysis;500
56.5;4 Conclusions;501
56.6;Acknowledgements;502
56.7;References;502
57;Correction to: Properties of Asphalt Binders with Increasing SBS Polymer Modification;504
57.1;Correction to: Chapter “Properties of Asphalt Binders with Increasing SBS Polymer Modification” in: M. Pasetto et al. (Eds.): Proceedings of the 5th International Symposium on Asphalt Pavements & Environment (APE), LNCE 48, https://doi.org/10.1007/978-3-030-29779-4_6;504
58;Author Index;505