Pasetto / Partl / Tebaldi | Proceedings of the 5th International Symposium on Asphalt Pavements & Environment (APE) | E-Book | sack.de
E-Book

E-Book, Englisch, Band 48, 507 Seiten, eBook

Reihe: Lecture Notes in Civil Engineering

Pasetto / Partl / Tebaldi Proceedings of the 5th International Symposium on Asphalt Pavements & Environment (APE)

E-Book, Englisch, Band 48, 507 Seiten, eBook

Reihe: Lecture Notes in Civil Engineering

ISBN: 978-3-030-29779-4
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark



This volume highlights the latest advances, innovations, and applications in the field of asphalt pavement technology, as presented by leading international researchers and engineers at the 5th International Symposium on Asphalt Pavements & Environment (ISAP 2019 APE Symposium), held in Padua, Italy on September 11-13, 2019. It covers a diverse range of topics concerning materials and technologies for asphalt pavements, designed for sustainability and environmental compatibility: sustainable pavement materials, marginal materials for asphalt pavements, pavement structures, testing methods and performance, maintenance and management methods, urban heat island mitigation, energy harvesting, and Life Cycle Assessment. The contributions, which were selected by means of a rigorous international peer-review process, present a wealth of exciting ideas that will open novel research directions and foster multidisciplinary collaboration among different specialists.
Pasetto / Partl / Tebaldi Proceedings of the 5th International Symposium on Asphalt Pavements & Environment (APE) jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


1;Preface;6
2;Contents;8
3;Sustainable Pavements and Environmentally Friendly Technologies;13
4;Effectiveness of Rejuvenators for Asphalt Mixtures with High Reclaimed Asphalt Pavement Content in Cold Climates;14
4.1;Abstract;14
4.2;1 Introduction;14
4.3;2 Research Objectives;15
4.4;3 Materials;16
4.4.1;3.1 Aggregates, Bitumen and Additives;16
4.4.2;3.2 Mixtures;17
4.5;4 Methods;18
4.5.1;4.1 Samples Preparation;18
4.5.2;4.2 Testing Methods;19
4.6;5 Test Results and Discussion;19
4.6.1;5.1 Compactability and Indirect Tensile Stiffness;19
4.6.2;5.2 Flexural Stiffness;20
4.6.3;5.3 Strength and Moisture Resistance;20
4.6.4;5.4 Resistance to Repeated Loading;22
4.7;6 Conclusions;22
4.8;References;23
5;Micromechanical Surface Investigation of Bio-modified RAP Binder;25
5.1;Abstract;25
5.2;1 Introduction;25
5.3;2 Materials and Methods;27
5.3.1;2.1 Rejuvenation Procedure;27
5.3.2;2.2 Dynamic Shear Rheometer;27
5.3.3;2.3 Force Mapping;28
5.4;3 Results and Discussion;28
5.4.1;3.1 Rheological Analysis;28
5.4.2;3.2 Nano-Mechanical Mapping;30
5.5;4 Conclusions;31
5.6;Acknowledgements;32
5.7;References;32
6;New Fluxing Agent for the Road Industry – An Overview of Technical Performances and HSE Benefits;34
6.1;Abstract;34
6.2;1 Introduction;34
6.3;2 New Generation of Fluxing Agents with Advantageous HSE Profile;35
6.4;3 Surface Dressing Applications;38
6.4.1;3.1 Anhydrous Fluxed Bitumen Results;38
6.4.2;3.2 Fluxed Bitumen Emulsions Results;39
6.5;4 Microsurfacing;40
6.5.1;4.1 Flux Oil for Early and Late-Season Microsurfacing Applications;40
6.5.2;4.2 Lab Test Results;41
6.6;5 Conclusions;42
6.7;References;43
7;Towards a Better Assessment of Recycling Agents Effects on Bitumen During Hot Recycling;44
7.1;Abstract;44
7.2;1 Introduction;44
7.3;2 Materials and Methods;45
7.3.1;2.1 Materials;45
7.3.2;2.2 Dynamic Shear Rheometer;47
7.3.3;2.3 Bending Beam Rheometer;47
7.4;3 Results and Discussions;48
7.5;4 Conclusions;53
7.6;Acknowledgements;53
7.7;References;54
8;Graphene-Enhanced Recycled Asphalt Pavements;55
8.1;Abstract;55
8.2;1 Introduction;55
8.3;2 GESM Chemical Formulation;57
8.4;3 Asphalt Concrete Preliminary Tests;58
8.4.1;3.1 Physical Analysis – Voids Content;58
8.4.2;3.2 Mechanical Analysis – Indirect Tensile Strength (ITS);59
8.4.3;3.3 Dynamic Tests - Stiffness Modulus;59
8.4.4;3.4 Dynamic Tests – Rutting;59
8.4.5;3.5 Dynamic Tests – Fatigue Endurance;60
8.5;4 Trial Section – Rome;60
8.5.1;4.1 Description of Trial Section;60
8.5.2;4.2 Trial Section Preliminary in Situ Test Results;62
8.5.3;4.3 Trial Section Preliminary Results in Laboratory;62
8.6;5 Conclusion;64
8.7;Acknowledgements;64
8.8;References;65
9;Properties of Asphalt Binders with Increasing SBS Polymer Modification;66
9.1;Abstract;66
9.2;1 Introduction;66
9.3;2 Asphalt Binder Preparation and Testing;67
9.4;3 Results and Discussion;70
9.5;4 Conclusions;75
9.6;References;76
10;Non- petroleum- Based Binders for Paving Applications: Rheological and Chemical Investigation on Ageing Effects;78
10.1;Abstract;78
10.2;1 Introduction;78
10.3;2 Materials and Methods;79
10.4;3 Results and Discussion;80
10.4.1;3.1 Rheological Tests;80
10.4.2;3.2 Chemical Analyses;83
10.5;4 Conclusions;85
10.6;References;86
11;Investigation into the Use of Reclaimed Asphalt Pavement in Asphalt Concrete;88
11.1;Abstract;88
11.2;1 Introduction;88
11.3;2 Materials and Methods;90
11.3.1;2.1 Materials;90
11.3.2;2.2 Methods;91
11.3.2.1;2.2.1 Experimental Procedures;91
11.4;3 Results and Discussions;93
11.4.1;3.1 Particle Size Distribution;93
11.4.2;3.2 Results of Marshall Test;93
11.5;4 Conclusions;96
11.6;References;97
12;Rheological and Mechanical Properties of HMA Containing Fly Ashes as Alternative Filler;99
12.1;Abstract;99
12.2;1 Introduction and Literature Review;99
12.3;2 Materials;100
12.3.1;2.1 Fly Ash Filler;100
12.3.2;2.2 Bitumen;101
12.4;3 Experimental Research;101
12.4.1;3.1 Mastic Rheological Phase;101
12.4.2;3.2 Asphalt Concrete Phase;104
12.5;4 Results and Conclusions;107
12.6;References;108
13;Future Trends in Asphalt Pavements;109
14;Preliminary Study of an Energy Harvesting System for Road Pavements Made with Marginal Aggregate;110
14.1;Abstract;110
14.2;1 Introduction;110
14.3;2 Materials and Samples Preparation;112
14.4;3 Test Methods;114
14.5;4 Results and Discussion;117
14.6;5 Conclusions;121
14.7;References;121
15;Electric Energy Harvesting Systems from Urban Road Pavements: Analysis and Preliminary Simulation;123
15.1;Abstract;123
15.2;1 Introduction;123
15.3;2 Road Energy Harvesting;124
15.3.1;2.1 Piezoelectric Technology;124
15.3.2;2.2 Photovoltaic Technology;126
15.4;3 Simulation;126
15.4.1;3.1 Piezoelectric System Output;127
15.4.2;3.2 Photovoltaic System Output;128
15.5;4 Conclusions;130
15.6;References;130
16;Environmental Sustainability and Energy Assessment of Bituminous Pavements Made with Unconventional Materials;132
16.1;Abstract;132
16.2;1 Introduction;132
16.3;2 Sustainable Asphalt Materials and Technologies: Strengths and Weaknesses;133
16.4;3 Energy and Carbon Footprint of Different Road Pavement Solutions;134
16.4.1;3.1 Goal and Scope Definition;134
16.4.2;3.2 Functional Unit and System Boundary;135
16.4.3;3.3 Scenario Definition for the Asphalt Pavement;135
16.4.4;3.4 Life Cycle Inventory and Data Quality;136
16.4.5;3.5 Life Cycle Energy and Environmental Impact Assessment Results;137
16.5;4 Conclusions;140
16.6;References;140
17;Reflectivity and Durability Assessment of Solar Heat-Blocking Pavement;142
17.1;Abstract;142
17.2;1 Introduction;142
17.3;2 Solar Heat-Blocking Pavement;143
17.3.1;2.1 Basic Concept;143
17.3.2;2.2 Application Procedure;143
17.4;3 Performance Testing;144
17.4.1;3.1 Reflectivity;144
17.4.2;3.2 Retro-Reflection;145
17.4.3;3.3 Laboratory Lamp Test;145
17.4.4;3.4 Torque Resistance;146
17.4.5;3.5 Ravelling Test;147
17.4.6;3.6 Accelerated Wear Test;148
17.4.7;3.7 Aggregate Pop-Out;149
17.5;4 Performance in the Field;150
17.5.1;4.1 Reduction in Surface Temperature;150
17.5.2;4.2 Improvement of Pavement Durability;150
17.6;5 Conclusions;151
17.7;References;151
18;Supply Curves Using LCA and LCCA for Conceptual Evaluation of Proposed Policies to Improve the Environment;153
18.1;Abstract;153
18.2;1 Introduction;153
18.3;2 The Approach;155
18.4;3 Applications in Studies Currently Underway;159
18.5;4 Summary and Conclusions;160
18.6;Acknowledgements;161
18.7;References;161
19;Marginal Materials for Asphalt Pavements;162
20;Cold Recycling with Bitumen Emulsion of Marginal Aggregates for Road Pavements;163
20.1;Abstract;163
20.2;1 Introduction;163
20.3;2 Materials;164
20.3.1;2.1 Environmental Analysis of the Marginal Materials;164
20.3.2;2.2 Physical-Mechanical Characterization of the Marginal Materials;165
20.4;3 Mixtures;167
20.4.1;3.1 Composition and Grading Curves of the Mixes;167
20.4.2;3.2 Optimization of the Mixtures;168
20.5;4 Performance Characterization;169
20.5.1;4.1 Stiffness Characterization;169
20.5.2;4.2 Permanent Deformation Analysis;170
20.6;5 Conclusions;171
20.7;References;171
21;Experimental Investigation of Performance Properties of Asphalt Mixture Designed with the Re-recycled RAP and EAFSS;172
21.1;Abstract;172
21.2;1 Introduction;173
21.3;2 Materials and Experimentation;174
21.3.1;2.1 Material Preparations;174
21.3.2;2.2 Fatigue Testing;174
21.3.3;2.3 Low Temperature Creep and Fracture Testing;175
21.4;3 Results and Analysis;176
21.4.1;3.1 Fatigue Behavior;176
21.4.2;3.2 Low Temperature Creep and Fracture Tests Results;177
21.5;4 Summary and Conclusions;179
21.6;Acknowledgments;179
21.7;References;180
22;Influence of Crumb Rubber Added by Dry Process on Linear Viscoelastic Properties and Tensile Strength of Bituminous Mixtures;182
22.1;Abstract;182
22.2;1 Introduction;182
22.3;2 Tested Materials;183
22.4;3 Experimental Procedures and Modelling;184
22.4.1;3.1 Complex Modulus Tests;184
22.4.2;3.2 2S2P1D Model;185
22.4.3;3.3 Direct Tensile Tests;186
22.5;4 Results and Analysis;186
22.5.1;4.1 Complex Modulus;186
22.5.2;4.2 Tensile Strength;188
22.6;5 Conclusions;189
22.7;Acknowledgements;189
22.8;References;189
23;A Preliminary Investigation into the Use of Alkali-Activated Blast Furnace Slag Mortars for High-Performance Pervious Concrete Pavements;191
23.1;Abstract;191
23.2;1 Introduction;191
23.3;2 Materials and Methods;192
23.4;3 Results and Discussion;196
23.5;4 Conclusions;198
23.6;Acknowledgements;199
23.7;References;199
24;Experimental Study on Use of Recycled Polymer as Modifier in Mastic and Asphalt Mixture;201
24.1;Abstract;201
24.2;1 Introduction;201
24.3;2 Material and Methodology;202
24.3.1;2.1 Aggregates;202
24.3.2;2.2 Bitumen;203
24.3.3;2.3 Fillers;203
24.3.4;2.4 PB25 Polymer;204
24.3.5;2.5 Mixture and Mastic Proportions;204
24.4;3 Experimental Work;205
24.4.1;3.1 Asphalt Mixture Tests;205
24.4.2;3.2 Mastic Tests;205
24.5;4 Results and Discussion;206
24.5.1;4.1 Volumetric Analysis;206
24.5.2;4.2 Stiffness Properties;206
24.5.3;4.3 Permanent Deformation Evaluation;207
24.5.4;4.4 Rheological Properties;208
24.6;5 Conclusions;210
24.7;References;210
25;Preliminary Study on the Mechanical Properties of an Asphalt Mixture Containing RAR Modifiers;212
25.1;Abstract;212
25.2;1 Background and Objectives;212
25.3;2 Materials Tested;214
25.3.1;2.1 Design Mixture;214
25.3.2;2.2 RAR Modifier;215
25.4;3 Research Methodology;215
25.4.1;3.1 Mixture Preparation;215
25.4.2;3.2 Mixture Compaction;216
25.4.3;3.3 Production of Test Specimens;216
25.4.4;3.4 Specimen Testing;217
25.5;4 Testing Results and Analysis;218
25.5.1;4.1 Compaction Results;218
25.5.2;4.2 Modulus Results;218
25.6;5 Conclusions;220
25.7;References;220
26;Influence of the Production Temperature on the Optimization Process of Asphalt Mixes Prepared with Steel Slag Aggregates Only;222
26.1;Abstract;222
26.2;1 Introduction;222
26.3;2 Background and Goal;223
26.4;3 Materials and Mixes;224
26.5;4 Test Methods;225
26.5.1;4.1 Volumetric Properties Assessment;225
26.5.2;4.2 Mechanical Characterization;225
26.5.3;4.3 Durability Evaluation;225
26.6;5 Experimental Findings;225
26.6.1;5.1 Volumetric Characteristics;225
26.6.2;5.2 Mechanical Properties;227
26.6.3;5.3 Durability;227
26.7;6 Conclusions and Further Studies;229
26.8;Acknowledgements;230
26.9;References;230
27;Long-Term Aging Behaviour of Asphalt Mixtures Modified with Crumb Rubber Using the Dry Process;232
27.1;Abstract;232
27.2;1 Introduction;232
27.3;2 Experimental Design;234
27.3.1;2.1 Asphalt Mix Manufacture and Characterization;234
27.3.2;2.2 Aging Methodology;235
27.4;3 Results and Discussion;236
27.5;4 Conclusions;238
27.6;Acknowledgements;238
27.7;References;239
28;Hot, Warm and Cold Recycling;241
29;100% Recycling of Low-Temp Asphalt for Minor Roads – Lab Compaction and Traffic Simulation;242
29.1;Abstract;242
29.2;1 Introduction;242
29.3;2 Objective;243
29.4;3 Material;243
29.5;4 Testing;244
29.5.1;4.1 Compaction of Laboratory Small Size Specimens;244
29.5.2;4.2 Compaction of Medium Size Specimens;247
29.5.3;4.3 Rutting Testing with Laboratory Scaled Mobile Traffic Simulator;249
29.5.4;4.4 Rutting Testing with Large Wheel Rutting Tester;250
29.6;5 Conclusions;251
29.7;References;252
30;Impacts of Recycling Agent on Superpave Mixture Containing RAP;253
30.1;Abstract;253
30.2;1 Introduction;253
30.3;2 Materials and Methods;254
30.3.1;2.1 Materials;254
30.3.2;2.2 Methodology;254
30.4;3 Results and Discussions;256
30.4.1;3.1 Rejuvenator Dosage;256
30.4.2;3.2 Rutting;256
30.4.3;3.3 Fatigue;256
30.4.4;3.4 Mass Loss;257
30.4.5;3.5 Volumetric;257
30.4.6;3.6 Indirect Tensile Strength;259
30.4.7;3.7 Moisture Sensitivity/Tensile Strength Ratio (TSR);259
30.4.8;3.8 Rutting;259
30.4.9;3.9 Fatigue;260
30.5;4 Conclusion;261
30.6;Acknowledgements;261
30.7;References;261
31;Evaluation of Reliability of RILEM Fragmentation Test;263
31.1;Abstract;263
31.2;1 Introduction;263
31.3;2 Objective and Scope;264
31.4;3 Materials and Methods;265
31.4.1;3.1 The Fragmentation Test;265
31.5;4 Results and Discussions;266
31.6;5 Summary and Conclusions;269
31.7;References;270
32;Development of a Soybean-Based Rejuvenator for Asphalt Mixtures Containing High Reclaimed Asphalt Pavement Content;271
32.1;Abstract;271
32.2;1 Introduction;271
32.3;2 Mixture and Materials;272
32.4;3 Performance Tests;273
32.4.1;3.1 Viscoelastic Properties;273
32.4.2;3.2 Fatigue Resistance;274
32.4.3;3.3 Rutting Resistance;274
32.5;4 Results and Discussion;275
32.6;5 Summary and Conclusion;279
32.7;Acknowledgments;279
32.8;References;279
33;Effect of Water and Cement Content on the Mechanical Properties of Cold Recycled Mixtures (CRM) with Bitumen Emulsion;281
33.1;Abstract;281
33.2;1 Introduction;281
33.3;2 Materials and Methodology;282
33.3.1;2.1 Materials;282
33.3.2;2.2 Mixtures;283
33.4;3 Results Analysis;285
33.5;4 Conclusions;288
33.6;References;289
34;Sustainable Warm In-plant SMA Mixtures with 80% Recycling and Produced at 115 °C;290
34.1;Abstract;290
34.2;1 Introduction;290
34.3;2 LE2AP Mixture Designing Philosophy;291
34.3.1;2.1 LE2AP and LE2AP SMA;291
34.3.2;2.2 PA-stone;292
34.3.3;2.3 LE2AP Mortar;293
34.4;3 Laboratory Production and Performance;295
34.5;4 Full Scale Demonstration;297
34.6;5 Conclusions;299
34.7;Acknowledgements;299
34.8;References;299
35;Reclaimed Asphalt Usage: Handling, Processing, Management and Future Trends in Lithuania;301
35.1;Abstract;301
35.2;1 Introduction;301
35.3;2 RAP Handling and Processing;302
35.4;3 RAP Quality Determination;305
35.5;4 RAP Management;306
35.6;5 Conclusions;308
35.7;References;308
36;Experimental Study to Re-refine Aged Binder Using Water;310
36.1;Abstract;310
36.2;1 Introduction;310
36.3;2 Solvent Characteristics of High-Temperature and High-Pressure Water and the Aqueous Pyrolysis Method;311
36.4;3 Experimental Overview;312
36.4.1;3.1 Effects of Reaction Temperature and Reaction Time on Restoration Property;312
36.4.2;3.2 Characteristics of Restoration Property Effects Compared with the Conventional Method;314
36.5;4 Experimental Results;315
36.5.1;4.1 Effects of Reaction Temperature on Restoration Property;315
36.5.2;4.2 Effects of Reaction Time on Restoration Property;316
36.5.3;4.3 Characteristics of Restoration Effects Compared with the Conventional Method;317
36.6;5 Conclusions;318
36.7;References;319
37;Cold In-place Recycling for a Base Layer of an Italian High-Traffic Highway;320
37.1;Abstract;320
37.2;1 Introduction;320
37.3;2 Project Description;321
37.4;3 FWD Tests on the Subgrade;321
37.5;4 Design of the Pavement Structure;322
37.6;5 Mix Design of the CRAB Mixture;322
37.7;6 Construction of the Trial Section;323
37.8;7 Validation of the CRAB Mixture;325
37.8.1;7.1 Laboratory Tests on GC Specimens;325
37.8.2;7.2 Laboratory Tests on Cores;325
37.8.3;7.3 In Situ FWD Tests;327
37.9;8 Conclusion;327
37.10;References;328
38;Test Methods and Performance;330
39;Effect of Nano SiO2, TiO2 and ZnO Modification to Rheological Properties of Neat and Polymer Modified Bitumen;331
39.1;Abstract;331
39.2;1 Introduction;331
39.3;2 Background of Bitumen Modification with Nano Additives;332
39.4;3 Materials and Methods;334
39.4.1;3.1 Materials;334
39.4.2;3.2 Experimental Program Ant Methods;334
39.4.2.1;3.2.1 Bitumen Nano-Modification and Sample Preparation Method;334
39.4.2.2;3.2.2 Linear Amplitude Sweep Test (LAS) Method;335
39.4.2.3;3.2.3 Multi Stress Creep Recovery Test (MSCR) Method;336
39.5;4 Result Analysis;337
39.6;5 Conclusions;340
39.7;Acknowledgements;341
39.8;References;341
40;Impregnation of Lightweight Aggregate Particles with Phase Change Material for Its Use in Asphalt Mixtures;343
40.1;Abstract;343
40.2;1 Introduction;343
40.3;2 Materials and Methods;344
40.4;3 Results and Discussion;347
40.5;4 Conclusions and Recommendations;349
40.6;Acknowledgements;349
40.7;References;350
41;The Use of a Polyethylene-Based Modifier to Produce Modified Asphalt Binders on Site;352
41.1;Abstract;352
41.2;1 Introduction;352
41.3;2 Asphalt Mixture Cracking Behavior: HMA Fracture Mechanics;353
41.4;3 Materials;354
41.4.1;3.1 Polymer Compound;355
41.4.2;3.2 HMA Specimen Preparation;355
41.5;4 Results and Analysis;356
41.5.1;4.1 Resilient Modulus Test;356
41.5.2;4.2 Creep Compliance Test;356
41.5.3;4.3 Energy Limits Evaluation;358
41.6;5 Conclusion;360
41.7;References;361
42;Effect of Moisture on Fatigue Characteristics of Asphalt Concrete Mixtures;362
42.1;Abstract;362
42.2;1 Introduction;362
42.3;2 Experimental Investigation;364
42.4;3 Results and Discussions;367
42.5;4 Conclusion;371
42.6;5 Limitations and Scope for Future Study;371
42.7;References;371
43;A New Approach to Determine Absorption Water of Reclaimed Asphalt Pavement Aggregate (RAP) for the Production of Cold Recycled Mixtures (CRM);373
43.1;Abstract;373
43.2;1 Introduction;373
43.3;2 Materials and Methodology;374
43.3.1;2.1 Materials;374
43.3.2;2.2 Methodology;374
43.4;3 Results Analysis;378
43.5;4 Conclusions;380
43.6;References;381
44;Effect of Air Void Topology on the Hydraulic Conductivity and Clogging Properties of Pervious Asphalt Roads;382
44.1;Abstract;382
44.2;1 Introduction;382
44.3;2 Materials and Methods;384
44.3.1;2.1 Clogging Material Gradation;384
44.3.2;2.2 Asphalt Composition;384
44.3.3;2.3 Impression of Resin Blocks with Realistic Pore Geometries;385
44.3.4;2.4 Hydraulic Conductivity Measurements;385
44.3.5;2.5 Clogging Measurements;385
44.3.6;2.6 Measurement of Macroporosity, Pore Diameter, Euler Number and Tortuosity;386
44.4;3 Results and Discussion;386
44.4.1;3.1 Geometrical Properties of Air Voids;386
44.4.2;3.2 Hydraulic Conductivity of the Test Samples;386
44.4.3;3.3 Clogging of Porous Asphalt;386
44.4.4;3.4 Effect of the Air Void Topology on the Clogging Ratio;388
44.4.5;3.5 Distribution of the Clogs in the Asphalt Mixture;388
44.5;4 Conclusions;389
44.6;Acknowledgements;390
44.7;References;390
45;Fatigue Performance of Bituminous Binders Tested by Linear Amplitude Sweep Test;391
45.1;Abstract;391
45.2;1 Introduction;391
45.3;2 VECD - Viscoelastic Continuum Damage Theory;393
45.4;3 Highly Polymer Modified Binders - HiMA;394
45.5;4 Experimental;395
45.5.1;4.1 Materials and Test Methods;395
45.5.2;4.2 Influence of the Test Temperature on the Sample Damage Mechanism During LAS Test;396
45.5.3;4.3 Obtained Parameters and Discussion;396
45.6;5 Summary and Conclusions;398
45.7;Acknowledgements;399
45.8;References;399
46;Oxidative Aging Effects on Damage-Healing Performance of Unmodified and Polymer Modified Asphalt Binders;401
46.1;Abstract;401
46.2;1 Introduction;401
46.3;2 Objectives;403
46.4;3 Materials and Testing;403
46.4.1;3.1 Materials;403
46.4.2;3.2 Testing Methods;403
46.4.2.1;3.2.1 LAS Test;403
46.4.2.2;3.2.2 LASH Test;404
46.4.2.3;3.2.3 Chemical SARA Composition Test;405
46.5;4 Results and Discussions;405
46.5.1;4.1 LASH-Based Healing Performance;405
46.5.2;4.2 Comparison Between Rheological Healing Properties and Chemical Composition;406
46.6;5 Conclusion;408
46.7;Acknowledgements;408
46.8;References;409
47;Pavement Structures, Maintenance and Management;410
48;Performance Evaluation of Innovative and Sustainable Pavement Solutions for Road Tunnels;411
48.1;Abstract;411
48.2;1 Introduction;411
48.3;2 Pavement Cross Sections;412
48.4;3 Performance Evaluation of Pavement Solutions;413
48.4.1;3.1 Design Traffic;413
48.4.2;3.2 Design Temperatures;414
48.4.3;3.3 Mechanical Properties of Materials;415
48.4.4;3.4 Transfer Functions;416
48.4.5;3.5 Design Life;417
48.5;4 Conclusions;418
48.6;References;419
49;Fast Falling Weight Accelerated Pavement Testing and Laboratory Analysis of Asphalt Pavements Reinforced with Geocomposites;421
49.1;Abstract;421
49.2;1 Introduction;421
49.3;2 Experimental Program;422
49.3.1;2.1 Trial Section;422
49.3.2;2.2 Materials;423
49.3.3;2.3 Testing Program and Procedures;424
49.4;3 Results and Analysis;426
49.4.1;3.1 APT Tests;426
49.4.2;3.2 Laboratory Tests;430
49.5;4 Conclusions;433
49.6;Acknowledgements;433
49.7;References;433
50;Automatic Crack Detection Results Using a Novel Device for Survey and Analysis of Road Pavement Condition;435
50.1;Abstract;435
50.2;1 Introduction;435
50.3;2 The Novel Device for Pavement Condition Survey;437
50.4;3 Preliminary Crack Detection Results;438
50.5;4 Conclusions;443
50.6;References;443
51;Experimental Evaluation of Improving Effects of Thermal Environment of Water Retaining Pavement on Wheelchair Users;445
51.1;Abstract;445
51.2;1 Introduction;445
51.3;2 Materials and Methods;447
51.3.1;2.1 Material (Water Retentive Block);447
51.3.2;2.2 Methods;447
51.3.2.1;2.2.1 Human Thermal Load;447
51.3.2.2;2.2.2 Physical Quantities and Physiological Quantities;448
51.3.3;2.3 Verification in a Standing-Still Posture;449
51.3.3.1;2.3.1 Experiment in Artificial Climate Chamber;449
51.3.3.2;2.3.2 Experiment at Outdoor Test Pavement;450
51.4;3 Validation in a Wheelchair User (Sitting Posture);451
51.4.1;3.1 Outline of Experiment;451
51.4.2;3.2 Results;452
51.5;4 Summary;453
51.6;References;453
52;Airport Pavement Management Systems: An Open BIM Approach;454
52.1;Abstract;454
52.2;1 Introduction;454
52.3;2 BIM and the Information Management Process;456
52.4;3 Airport Pavement Management Systems;456
52.5;4 Lamezia Terme International Airport;458
52.6;5 Runway BIM Model;459
52.6.1;5.1 Geometry;459
52.6.2;5.2 Semantic Data;460
52.7;6 Interoperability Between a BIM Model and the APMS;461
52.8;7 Conclusions and Future Developments;462
52.9;References;463
53;Mixture Design for Recycled Porous Asphalt Pavement and Results of Follow-up Survey for Ten Years;464
53.1;Abstract;464
53.2;1 Introduction;464
53.3;2 Study Method;465
53.3.1;2.1 Materials Used and Mix Design;465
53.3.2;2.2 Test Construction;466
53.3.3;2.3 Survey Method for a Road that Has Been in Use;468
53.3.4;2.4 Rut Depth;468
53.3.5;2.5 Evenness;469
53.3.6;2.6 Tire-Pavement Noise;470
53.3.7;2.7 Texture Depth;471
53.3.8;2.8 Skid Resistance;471
53.4;3 Conclusions;472
53.5;Acknowledgements;473
53.6;References;473
54;Performance Related Quality Assurance in Pavement Construction;474
54.1;Abstract;474
54.2;1 Introduction;474
54.3;2 Database Selection;475
54.4;3 Structural Capacity and Performance;476
54.5;4 Impact on Residual Life and Maintenance;479
54.6;5 Economic Costs;480
54.7;6 Conclusions;482
54.8;References;483
55;The BIM (Building Information Modeling)-Based Approach for Road Pavement Maintenance;484
55.1;Abstract;484
55.2;1 Introduction;485
55.3;2 General Notes on the BIM-Based Approach for Infrastructures;486
55.4;3 Ideas and Preliminary Tests for Road Maintenance in an I-BIM Environment;489
55.5;4 Conclusions;492
55.6;Acknowledgements;493
55.7;References;493
56;A New Design Methodology for Improving Porous Concrete Properties to Achieve Multifunctional and Sustainable Pavements;495
56.1;Abstract;495
56.2;1 Introduction;495
56.3;2 Materials and Methods;496
56.3.1;2.1 Materials;496
56.3.2;2.2 PCD Methodology;497
56.3.3;2.3 Production;498
56.3.4;2.4 Tests;498
56.3.4.1;2.4.1 Permeability Test;498
56.3.4.2;2.4.2 Indirect Tensile Test;499
56.3.4.3;2.4.3 Compression Strength Test;499
56.4;3 Results and Discussion;499
56.4.1;3.1 Permeability Results;499
56.4.2;3.2 Indirect Tensile Test;500
56.4.3;3.3 Compression Strength Test;500
56.4.4;3.4 Multicriteria Decision Making Analysis;500
56.5;4 Conclusions;501
56.6;Acknowledgements;502
56.7;References;502
57;Correction to: Properties of Asphalt Binders with Increasing SBS Polymer Modification;504
57.1;Correction to: Chapter “Properties of Asphalt Binders with Increasing SBS Polymer Modification” in: M. Pasetto et al. (Eds.): Proceedings of the 5th International Symposium on Asphalt Pavements & Environment (APE), LNCE 48, https://doi.org/10.1007/978-3-030-29779-4_6;504
58;Author Index;505


Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.