Parker | Fields, Flows and Waves | E-Book | sack.de
E-Book

E-Book, Englisch, 270 Seiten, eBook

Reihe: Springer Undergraduate Mathematics Series

Parker Fields, Flows and Waves

An Introduction to Continuum Models
2003
ISBN: 978-1-4471-0019-5
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark

An Introduction to Continuum Models

E-Book, Englisch, 270 Seiten, eBook

Reihe: Springer Undergraduate Mathematics Series

ISBN: 978-1-4471-0019-5
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark



This book serves as an introduction to the use of mathematics in describing collective phenomena in physics and biology. Derived from a course of innovative lectures, the book shows students early in their studies how many of the topics they have encountered – partial differential equations, differential equations, Fourier series, and linear algebra – are useful in constructing, analysing and interpreting phenomena present in the real world. Throughout, ideas are developed using worked examples and exercises with solution. The text does not assume a strong background in physics.

Parker Fields, Flows and Waves jetzt bestellen!

Zielgruppe


Lower undergraduate


Autoren/Hrsg.


Weitere Infos & Material


1. The Continuum Description.- 1.1 Densities and Fluxes.- 1.2 Conservation and Balance Laws in One Dimension.- 1.3 Heat Flow.- 1.4 Steady Radial Flow in Two Dimensions.- 1.5 Steady Radial Flow in Three Dimensions.- 2. Unsteady Heat Flow.- 2.1 Thermal Energy.- 2.1.1 Heat Balance in One-dimensional Problems.- 2.1.2 Some Special Solutions of Equation (2.3).- 2.2 Effects of Heat Supply.- 2.3 Unsteady, Spherically Symmetric Heat Flow.- 3. Fields and Potentials.- 3.1 Gradient of a Scalar.- 3.1.1 Some Applications.- 3.2 Gravitational Potential.- 3.2.1 Special Properties of the Function ?=r?1.- 3.3 Continuous Distributions of Mass.- 3.4 Electrostatics.- 3.4.1 Gauss’s Law of Flux.- 3.4.2 Charge-free Regions.- 3.4.3 Surface Charge Density.- 4. Laplace’s Equation and Poisson’s Equation.- 4.1 The Ubiquitous Laplacian.- 4.2 Separable Solutions.- 4.3 Poisson’s Equation.- 4.4 Dipole Solutions.- 4.4.1 Uses of Dipole Solutions to ?2?=0.- 4.4.2 Spherical Inclusions.- 5. Motion of an Elastic String.- 5.1 Tension and Extension; Kinematics and Dynamics.- 5.1.1 Dynamics.- 5.2 Planar Motions.- 5.2.1 Small Transverse Motions.- 5.2.2 Longitudinal Motions.- 5.3 Properties of the Wave Equation.- 5.3.1 Standing Waves.- 5.3.2 Superposition of Standing Waves.- 5.4 D’Alembert’s Solution, Travelling Waves and Wave Reflections.- 5.4.1 Wave Reflections.- 5.5 Other One-dimensional Waves.- 5.5.1 Acoustic Vibrations in a’ lUbe.- 5.5.2 Telegraphy and High-voltage Transmission.- 6. Fluid Flow.- 6.1 Kinematics and Streamlines.- 6.1.1 Some Important Examples of Steady Flow.- 6.2 Volume Flux and Mass Flux.- 6.2.1 Incompressible Fluids.- 6.2.2 Mass Conservation.- 6.3 Two-dimensional Flows of Incompressible Fluids.- 6.3.1 The Continuity Equation.- 6.3.2 Irrotational Flows and the Velocity Potential.- 6.3.3 The Stream Function.- 6.4 Pressure in a Fluid.- 6.4.1 Resultant Force.- 6.4.2 Hydrostatics and Archimedes’ Principle.- 6.4.3 Momentum Density and Momentum Flux.- 6.5 Bernoulli’s Equation.- 6.5.1 The Material (Advected) Derivative.- 6.5.2 Bernoulli’s Equation and Dynamic Pressure.- 6.5.3 The Principle of Aerodynamic Lift.- 6.6 Three-dimensional, Incompressible Flows.- 6.6.1 The Continuity Equation.- 6.6.2 Irrotational Flows, the Velocity Potential and Laplace’s Equation.- 7. Elastic Deformations.- 7.1 The Kinematics of Deformation.- 7.1.1 Deformation Gradient.- 7.1.2 Stretch and Rotation.- 7.2 Polar Decomposition.- 7.3 Stress.- 7.3.1 Traction Vectors.- 7.3.2 Components of Stress.- 7.3.3 Traction on a General Surface.- 7.4 Isotropic Linear Elasticity.- 7.4.1 The Constitutive Law.- 7.4.2 Stretching, Shear and Torsion.- 8. Vibrations and Waves.- 8.1 Wave Reflection and Refraction.- 8.1.1 Use of the Complex Exponential.- 8.1.2 Plane Waves.- 8.1.3 Reflection at a Rigid Wall.- 8.1.4 Refraction at an Interface.- 8.1.5 Total Internal Reflection.- 8.2 Guided Waves.- 8.2.1 Acoustic Waves in a Layer.- 8.2.2 Waveguides and Dispersion.- 8.3 Love Waves in Elasticity.- 8.4 Elastic Plane Waves.- 8.4.1 Elastic Shear Waves.- 8.4.2 Dilatational Waves.- 9. Electromagnetic VVaves and Light.- 9.1 Physical Background.- 9.1.1 The Origin of Maxwell’s Equations.- 9.1.2 Plane Electromagnetic Waves.- 9.1.3 Reflection and Refraction of Electromagnetic Waves.- 9.2 Waveguides.- 9.2.1 Rectangular Waveguides.- 9.2.2 Circular Cylindrical Waveguides.- 9.2.3 An Introduction to Fibre Optics.- 10. Chemical and Biological Models.- 10.1 Diffusion of Chemical Species.- 10.1.1 Fick’s Law of Diffusion.- 10.1.2 Self-similar Solutions.- 10.1.3 Travelling Wavefronts.- 10.2 Population Biology.- 10.2.1 Growth and Dispersal.- 10.2.2 Fisher’s Equation and Self-limitation.- 10.2.3 Population-dependent Dispersivity.- 10.2.4 Competing Species.- 10.2.5 Diffusive Instability.- 10.3 Biological Waves.- 10.3.1 The Logistic Wavefront.- 10.3.2 Travelling Pulses and Spiral Waves.- Solutions.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.