Buch, Englisch, Band 281, 318 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 738 g
Preparation, Properties and Applications
Buch, Englisch, Band 281, 318 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 738 g
Reihe: Springer Series in Materials Science
ISBN: 978-981-13-2958-6
Verlag: Springer Nature Singapore
This book provides a comprehensive overview of the fundamental properties, preparation routes and applications of a novel class of organic–inorganic nanocomposites known as periodic mesoporous organosilicas (PMOs).
Mesoporous silicas are amorphous inorganic materials which have silicon and oxygen atoms in their framework with pore size ranging from 2 to 50 nm. They can be synthesized from surfactants as templates for the polycondensation of various silicon sources such as tetraalkoxysilane. In general, mesoporous silica materials possess high surface areas, tunable pore diameters, high pore volumes and well uniformly organized porosity. The stable chemical property and the variable ability for chemical modification makes them ideal for many applications such as drug carrier, sensor, separation, catalyst, and adsorbent. Among such mesoporous silicas, in 1999, three groups in Canada, Germany, and Japan independently developed a novel class of organic–inorganic nanocomposites known as periodic mesoporous organosilicas (PMOs). The organic functional groups in the frameworks of these solids allow tuning of their surface properties and modification of the bulk properties of the material.
The book discusses the properties of PMOs, their preparation, different functionalities and morphology, before going on to applications in fields such as catalysis, drug delivery, sensing, optics, electronic devices, environmental applications (gas sensing and gas adsorption), biomolecule adsorption and chromatography. The book provides fundamental understanding of PMOs and their advanced applications for general materials chemists and is an excellent guide to these promising novel materials for graduate students majoring in chemical engineering, chemistry, polymer science and materials science and engineering.
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
- Naturwissenschaften Physik Thermodynamik Festkörperphysik, Kondensierte Materie
- Technische Wissenschaften Maschinenbau | Werkstoffkunde Technische Mechanik | Werkstoffkunde Materialwissenschaft: Keramik, Glas, Sonstige Werkstoffe
- Naturwissenschaften Chemie Physikalische Chemie Chemische Reaktionen, Katalyse
- Technische Wissenschaften Technik Allgemein Nanotechnologie
- Naturwissenschaften Chemie Organische Chemie Polymerchemie
- Naturwissenschaften Chemie Physikalische Chemie Molekulare Chemische Nanostrukturen
Weitere Infos & Material
Chapter 1. Introduction
Chapter 2. General Synthesis and Physico-chemical Properties of Mesoporous Materials
2.1. Synthesis Methods of Mesoporous Materials
2.1.1. Sol-gel Method
2.1.2. Template Assisted Technique
2.1.3. Liquid Crystal Template Approach (LCTA)2.1.4. Microwave Assisted Technique
2.1.5. Chemical Etching Technique
2.2. Templates
2.3. Basic and Acidic Synthesis
2.3.1. Basic Condition
2.3.2. Acidic Condition
2.4.Temperature2.5. Removal of Template
2.6. Nonaqueous Synthesis
2.7. Mesophase Tailoring
2.7.1 Micellar Mesostructure.
2.7.1.1. Critical Micelle Concentration2.7.1.2. The Packing Parameter
2.7.1.3. The Hydrophilic/Hydrophobic Volume Ratio
2.7.1.4. Surfactant Phase Diagram.
2.7.2. 2-Dimensional (2D) Mesostructures.
2.7.3. 3-Dimensional (3D) Mesostructures.
2.7.3.1. Bicontinuous Cubic Mesostructures
2.7.3.2. Cage-type Mesostructures.
2.7.4. Lamellar and Disordered Mesostructures
2.7.5. Other Mesostructures.
2.8. Morphology Control of Mesoporous Silica
2.9. Modification of Mesoporous Silica2.9.1. Modification of Nanoparticles Inside Mesoporous Silica
2.9.2. Organic Modification on the Pore Surface of Mesoporous Silica2.9.2.1. Grafting Method
2.9.2.2. Co-condensation Method
2.10. Application of Mesoporous Silica
2.11. Periodic Mesoporous Organosilicas (PMOs)
Chapter 3. Synthetic Routes and New Precursors for the Preparation of PMOs
3.1. Synthetic Pathways of PMOs
3.2. Precursors for the Preparation of PMOs
3.2.1. Amorphous Precursors
3.2.1.1. Long Chain and Cyclic Moieties Bridged PMO Precursors
3.1.1.4. Bis-silylate Chiral Precursors
3.2.1.3. Metal Complexes Included in PMO Materials.
3.2.2. Crystalline Precursors
Chapter 4. PMOs with a Range of Morphologies
4.1. Powder or Monolith Morphologies
4.2. Hollow Morphology
4.3. Film Morphology
Chapter 5. PMOs for Catalytic Applications
5.1. Organic Group Functionalized PMO Materials
5.2. Metal Complex Functionalized PMOs
5.2.1. Pd Complex Functionalized PMOs5.2.2. Ru Complex Functionalized PMOs
5.2.3. Pt Complex Functionalized PMOs
5.2.4. V Complex Functionalized PMOs
5.2.5. Ir Complex Functionalized PMOs
5.2.6. Mn Complex Functionalized PMOs
5.2.7. Cu Complex Functionalized PMOs
5.2.8. Rh Complex Functionalized PMO
5.2.9. Mo Complex Functionalized PMOs
5.2.10. Sc Complex Functionalized PMO5.2.11. Ti Complex Functionalized PMOs
5.2.12. Fe, Cu, Sn Complex Functionalized PMOs
5.2.13. Ferrocene Complex Functionalized PMOs
5.2.14. WO Complex Functionalized PMO5.2.15. Bimetal Complex Functionalized PMOs
5.4. Metal Nanoparticles Supported PMOs
5.4.1. Au Nanoparticles Supported PMOs5.4.2. Pt Nanoparticles Supported PMOs
5.4.3. Pd Nanoparticles Supported PMOs
5.4.4. Other Au, Pt, Pd Nanoparticles Supported PMOs
5.4.5. Pt-Pd Bi-metal Nanoparticles Supported PMOs5.4.6. Pt, IrO Nanoparticles Supported PMOs
5.4.7. Phosphomolybdic Acid Nanoparticles Supported PMOs
Chapter 6. PMOs as Hosts for Drug and Biomolecules
6.1. PMOs for Drug Delivery System
6.1.1. PMO as Nanocarrier
6.1.2. Hollow PMO
6.1.3. PMO with Gatekeeper6.2. PMOs for Protein/Gene Delivery System
6.3. Biocompatibility of PMOs
Chapter 7. PMOs for Adsorption7.1. Metal ions adsorption
7.1.1. Adsorption of Li Ions Adsorption
7.2.2. Adsorption of Co Ions
7.1.3. Adsorption of Hg, Pb, Cd, and Ag Ions
7.2. Pollutant (Organic Molecules) Adsorption
7.3. Adsorption of Biomolecules
7.3.1. Adsorption of Protein
7-3-2. Adsorption of Enzyme
7.3.3. Amino Acids Adsorption and Cell Adhesion
Chapter 8. PMOs for Separation
8.1. Gas Adsorption/Separation
8.2. Chromatographic Phases
Chapter 9. Electronic and Optical Applications
9.1. Electronic Devices
9.2. Low-k PMO Films
9.3. Optical Applications
9.3.1. Light Harvesting
9.3.2. Photoluminescence
9.3.3. Sensing and Imprinting
Chapter 10. PMOs for Other Advanced Applications
10.1. Ion Exchangers
10.2. Superhydrophilic Antireflective Coating
10.3. Bioactive Composites
10.4. Refolding of Proteins
10-5. Bioimaging
Chapter 11. Summary and Future Outlooks




