E-Book, Englisch, Band 569, 436 Seiten, eBook
Parenti-Castelli / Schiehlen ROMANSY 21 - Robot Design, Dynamics and Control
1. Auflage 2016
ISBN: 978-3-319-33714-2
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark
Proceedings of the 21st CISM-IFToMM Symposium, June 20-23, Udine, Italy
E-Book, Englisch, Band 569, 436 Seiten, eBook
Reihe: CISM International Centre for Mechanical Sciences
ISBN: 978-3-319-33714-2
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark
Zielgruppe
Research
Autoren/Hrsg.
Weitere Infos & Material
1;Preface;6
2;Contents;8
3;Keynote Papers;14
4;1 Innovations in Infrastructure Service Robots;15
4.1;Abstract;15
4.2;1 Introduction;16
4.3;2 Mobile High-Rise Spray Painting Robot;17
4.3.1;2.1 Motivation;17
4.3.2;2.2 Overall System;18
4.3.3;2.3 Robotic System Realization;19
4.4;3 Post-construction Quality Assessment Robot;20
4.4.1;3.1 Motivation;20
4.4.2;3.2 Quality Assessment Methodology;21
4.4.3;3.3 Experimental Results;22
4.5;4 Deep Tunnel Sewerage System Inspection Robot;24
4.5.1;4.1 Motivation;24
4.5.2;4.2 Overall System;24
4.5.3;4.3 System Designs;25
4.6;5 Conclusions and Discussion;26
4.7;Acknowledgments;26
4.8;References;27
5;2 The New Robotics Age: Meeting the Physical Interactivity Challenge;29
5.1;Abstract;29
6;Kinematics for Robotics;31
7;Robust Inverse Kinematics at Position Level by Means of the Virtual Redundant Axis Method;32
7.1;1 Introduction;32
7.2;2 State of the Art;33
7.2.1;2.1 Problem Formulation;33
7.2.2;2.2 WDLS Method with Feedback Correction;34
7.3;3 Virtual Redundant Axis Method;35
7.3.1;3.1 VRA at Velocity Level;36
7.3.2;3.2 VRA at Position Level;37
7.4;4 Experimental Results;38
7.5;5 Conclusions;39
7.6;References;39
8;Redundancy Resolution of a 9 DOF Serial Manipulator Under Hard Task Constraints;41
8.1;1 Introduction;41
8.2;2 Task Definition;44
8.3;3 Null Space Constraints;44
8.4;4 Null Space Transport;46
8.5;5 Conclusions;47
8.6;References;47
9;5 Geometry and Direct Kinematics of Six-DOF Three-Limbed Parallel Manipulator;49
9.1;Abstract;49
9.2;1 Introduction;49
9.3;2 Geometry of the PM 3CCC;50
9.4;3 Direct Kinematics;54
9.5;4 Conclusions;55
9.6;References;55
10;6 Learning Global Inverse Kinematics Solutions for a Continuum Robot;57
10.1;Abstract;57
10.2;1 Introduction;57
10.3;2 Formulation of the Inverse Kinematics Learning Problem;59
10.4;3 Training the Neural Network;60
10.5;4 Simulations and Analysis;62
10.6;5 Conclusion;63
10.7;Acknowledgement;63
10.8;References;64
11;7 A Study of a Wheel Shape for Increasing Climbing Ability of Slopes and Steps;65
11.1;Abstract;65
11.2;1 Introduction;66
11.3;2 Overall Design of WAMOT;67
11.4;3 A Study on a New Wheel Shape;67
11.4.1;3.1 A Study of Climbing Steps;67
11.4.2;3.2 A Study of Climbing Slopes;68
11.4.3;3.3 A Study on the Number of Notches;69
11.4.4;3.4 A Study of the Edge Shape of the Notch;71
11.5;4 Verification;73
11.6;5 Discussion;73
11.7;6 Conclusions;74
11.8;References;74
12;Position Kinematics of a 3-underlineRRS Parallel Manipulator;75
12.1;1 Introduction;75
12.2;2 Position Analysis;76
12.3;3 Numerical Example;81
12.4;4 Conclusion;81
12.5;References;81
13;9 Kinematic Analysis of a Single-Loop Translational Manipulator;83
13.1;Abstract;83
13.2;1 Introduction;83
13.3;2 Position Analysis;85
13.4;3 Instantaneous Kinematics;86
13.5;4 Conclusions;88
13.6;Acknowledgments;89
13.7;References;89
14;10 A Measure of the Distance Between Two Rigid-Body Poses Based on the Use of Platonic Solids;90
14.1;Abstract;90
14.2;1 Introduction;90
14.3;2 Formulation of the Proposed Distance Metric;92
14.4;3 Distance Metric Properties;95
14.5;4 Position and Dimension of the Tetrahedron;95
14.6;5 Conclusions;97
14.7;References;97
15;Dynamics for Robotics;99
16;11 Properties of the Dahl Model Applied to Modelling of Static Friction in Closed-Loop Kinematic Chains;100
16.1;Abstract;100
16.2;1 Introduction;100
16.3;2 Constraints Addition-Deletion in Closed-Loop Mechanisms;101
16.4;3 Dahl Friction in Closed-Loop Mechanisms;104
16.5;4 Dahl Friction in Flexible Body Models;106
16.6;5 Conclusions;107
16.7;Acknowledgments;107
16.8;References;107
17;12 Mechanics of Mobile Robots with Mecanum Wheels;109
17.1;Abstract;109
17.2;1 Introduction;109
17.3;2 Kinematics of a Mecanum Wheel;111
17.4;3 Dynamic Equations;113
17.5;4 Optimization of Driving Torques;114
17.6;5 Conclusion;116
17.7;Acknowledgments;116
17.8;References;116
18;13 Design of Partially Balanced 5R Planar Manipulators with Reduced Center of Mass Acceleration (RCMA);118
18.1;Abstract;118
18.2;1 Introduction;118
18.3;2 Shaking Force Balancing;120
18.3.1;2.1 Reaching Similar Accelerations of the End-Effector of the 5R Planar Parallel Manipulator and Its Common Center of Mass;121
18.3.2;2.2 Optimal Control of the Acceleration of the End-Effector of the 5R Planar Manipulator;122
18.4;3 Illustrative Example;123
18.5;4 Conclusions;126
18.6;References;127
19;An Alternative Approach to the Dynamics Analysis of Closed-Loop Mechanisms;128
19.1;1 Introduction;128
19.2;2 Displacement and Kinematic Relations;129
19.3;3 Dynamics Analysis Based on the NOC;131
19.3.1;3.1 The Mathematical Model of the Mechanism;131
19.3.2;3.2 Derivation of the Twist-Shaping Relations;132
19.4;4 Simulation Results;134
19.5;5 Conclusions;135
19.6;References;136
20;15 Lagrangian Based Dynamic Analyses of Delta Robots with Serial-Parallel Architecture;137
20.1;Abstract;137
20.2;1 Introduction;137
20.3;2 Geometric Relations;139
20.4;3 Kinematic Analyses;140
20.5;4 Dynamic Analyses;141
20.6;5 Results;143
20.7;6 Conclusion;145
20.8;References;145
21;Control and Perception of Robots;146
22;Adaptive Model Predictive Control Design for Underactuated Multibody Systems with Uncertain Parameters;147
22.1;1 Introduction;147
22.2;2 Constrained Adaptive Nonlinear Control;148
22.2.1;2.1 Feedback Linearization;148
22.2.2;2.2 Model Predictive Control;149
22.2.3;2.3 Variable Constraint Mapping;149
22.2.4;2.4 Adaptive Control Using Unscented Kalman Filter;150
22.3;3 Fuzzy Uncertainty Analysis;151
22.4;4 Application: Underactuated Manipulator with Passive Joint;152
22.5;5 Conclusion;153
22.6;References;154
23;Control and Experiments with Energy-Saving SCARA Robots;155
23.1;1 Introduction;155
23.2;2 Design and Control of Energy Saving Manipulator;156
23.2.1;2.1 Design of Energy Saving Manipulator;157
23.2.2;2.2 Control of Energy Saving Manipulator;158
23.3;3 A Prototype 2DOF Manipulator and Experimental Results;159
23.4;4 Conclusions;162
23.5;References;162
24;Control Design for Pneumatic Manipulation Robot;164
24.1;1 Manipulator ManGo;165
24.2;2 Control System;165
24.2.1;2.1 Control Structure in Matlab;166
24.2.2;2.2 Machine Vision;166
24.3;3 Experiments;169
24.4;4 Conclusion;170
24.5;References;171
25;Adaptive Edge Features Estimation for Humanoid Robot Visual Perception;172
25.1;1 Instruction;172
25.2;2 Related Works;173
25.3;3 Adaptive Straight Line Split;174
25.4;4 Experimental Results;176
25.5;5 Conclusion and Future Works;177
25.6;References;178
26;Disturbance Rejection Controller for Biped Walking Using Real-Time ZMP Regulation;179
26.1;1 Introduction;180
26.2;2 ZMP Regulation;180
26.2.1;2.1 ZMP Modification;181
26.2.2;2.2 Foot Placement with ZMP Increment;183
26.3;3 Modification of CoM Trajectory;184
26.4;4 Simulations and Experiments;184
26.4.1;4.1 Simulations;184
26.4.2;4.2 Experiments;187
26.5;5 Conclusion;187
26.6;References;187
27;Novel Robot Design;189
28;Human-Powered Robotics---Concept and One-DOF Prototype;190
28.1;1 Introduction;190
28.1.1;1.1 Background and Research Purpose;190
28.1.2;1.2 Relevant Studies;191
28.2;2 Design and Principle of Operation;192
28.3;3 Controller;193
28.4;4 Experimental Results;194
28.5;5 Conclusions and Future Work;196
28.6;References;196
29;22 Gripping Tests on an Underactuated Self-adapting Hand Prototype;198
29.1;Abstract;198
29.2;1 Introduction;198
29.3;2 The Design of the Hand;200
29.4;3 Gripping Tests on the Prototype;202
29.5;4 Conclusions;204
29.6;References;204
30;Combined Structural and Dimensional Synthesis of Serial Robot Manipulators;206
30.1;1 Introduction;206
30.2;2 Generation of Suitable Architectures and Extraction of the Optimisation Parameters;207
30.3;3 Kinematics Modelling;209
30.4;4 Optimisation Procedure;210
30.4.1;4.1 Performance Indices;211
30.4.2;4.2 Optimisation Problem;211
30.5;5 Exemplary Results;212
30.6;6 Conclusions;213
30.7;References;214
31;Development of the Acroboter Service Robot Platform;216
31.1;1 Introduction;216
31.2;2 Concept of the Structural Design;217
31.3;3 Dynamic Modelling Approach;218
31.4;4 Control Issues;219
31.4.1;4.1 Singularities;219
31.4.2;4.2 Underactuation;220
31.4.3;4.3 Redundancy;220
31.4.4;4.4 Control Algorithm;221
31.5;5 Summary;222
31.6;References;222
32;The Inversion of Motion of Bristle Bots: Analytical and Experimental Analysis;224
32.1;1 Introduction;224
32.2;2 Setting, Modelling, and Analysis;225
32.3;3 Experiments;229
32.4;4 Conclusions and Outlook;231
32.5;References;231
33;Design of a Compliant Environmentally Interactive Snake-Like Manipulator;232
33.1;1 Introduction;232
33.2;2 Methods;233
33.2.1;2.1 The Compliant Joint;233
33.2.2;2.2 Pseudo Rigid Body Modelling;234
33.2.3;2.3 Finite Element Analysis;235
33.2.4;2.4 Optimization;235
33.2.5;2.5 Prototype;235
33.3;3 Experiments;236
33.3.1;3.1 Conditions;236
33.3.2;3.2 Results;237
33.3.3;3.3 Discussion;237
33.4;4 Conclusion;238
33.5;References;239
34;Humanoid Robots;240
35;27 Joint Mechanism Coping with Both of Active Pushing-off and Joint Stiffness Based on Human;241
35.1;Abstract;241
35.2;1 Introduction;242
35.3;2 Knee Joint Mechanism Coping with Both Active Pushing-off and Joint Stiffness;243
35.3.1;2.1 Joint Requirements for Running;243
35.3.2;2.2 Design of Knee Joint Mechanism;243
35.3.3;2.3 Design of CFRP Leaf Spring;245
35.3.4;2.4 A Bipedal Robot with the Developed Joint Mechanism;246
35.4;3 Evaluation of the Developed Joint Mechanism;246
35.4.1;3.1 Evaluation of CFRP Leaf Spring;246
35.4.2;3.2 Hopping with an Active Pushing-off and Joint Stiffness;247
35.5;4 Conclusion;248
35.6;Acknowledgements;248
35.7;References;248
36;Design of a Dexterous Hand for a Multi-hand Task;249
36.1;1 Introduction;249
36.2;2 In-Hand Manipulation and Dexterity;250
36.3;3 Dexterous Hand Design Methodology;250
36.4;4 Orange Peeler Hand;251
36.4.1;4.1 Motivation;251
36.4.2;4.2 Task Definition;251
36.4.3;4.3 Structural Synthesis;252
36.4.4;4.4 Dimensional Synthesis;253
36.5;5 Results and Implementation;254
36.6;6 Conclusions;255
36.7;References;255
37;Facial Expression Design for the Saxophone Player Robot WAS-4;257
37.1;1 Introduction;258
37.2;2 Humanoid Saxophonist Player Robot WAS-4;259
37.3;3 Method;260
37.3.1;3.1 Design and Development of the Facial Expressions Mechanism;260
37.3.2;3.2 Facial Expression During Saxophone Performance;260
37.3.3;3.3 Mechanical Movement Specifications;261
37.3.4;3.4 Design of the Eyebrows and Eyelids Mechanisms;262
37.4;4 Experiments and Results;262
37.5;5 Conclusions;263
37.6;References;264
38;30 Disturbance Force Generator for Biped Robots;265
38.1;Abstract;265
38.2;1 Introduction;266
38.3;2 Mechanical Structure of Disturbance Force Generator;266
38.3.1;2.1 Preliminary Analysis;266
38.3.2;2.2 Mechanical Design;266
38.4;3 Control System for Disturbance Force Generator;268
38.5;4 Experimental Tests and Consideration;269
38.6;5 Conclusions;271
38.7;Acknowledgments;271
38.8;References;271
39;31 LARMbot: A New Humanoid Robot with Parallel Mechanisms;273
39.1;Abstract;273
39.2;1 Introduction;273
39.3;2 Parallel Architectures in Human Anatomy;274
39.4;3 The LARMbot;275
39.5;4 Prototype and Testing;277
39.6;5 Conclusions;280
39.7;References;280
40;Human-Inspired Humanoid Balancing and Posture Control in Frontal Plane;282
40.1;1 Introduction;282
40.2;2 Generalization of DEC Concept to Frontal Plane;284
40.2.1;2.1 The DEC Concept;284
40.2.2;2.2 Lower Body Kinematics;285
40.3;3 Experiments;286
40.4;4 Results;287
40.5;5 Conclusion and Future Work;288
40.6;References;288
41;Compliant Actuator Dedicated for Humanoidal Robot---Design Concept;290
41.1;1 Introduction;290
41.2;2 Design Considerations on Elastic Actuators;291
41.2.1;2.1 Parameters Selection;292
41.3;3 Simulation Research;293
41.3.1;3.1 Control System;293
41.3.2;3.2 Developed Model;294
41.3.3;3.3 Results;294
41.4;4 Conclusion and Future Works;295
41.5;References;296
42;Service Robots;298
43;Design of a 3-UPS-RPU Parallel Robot for Knee Diagnosis and Rehabilitation;299
43.1;1 Introduction;300
43.2;2 Conceptual Design;301
43.2.1;2.1 Design Specification;301
43.2.2;2.2 Parallel Robot with 2T2R Degree of Freedom;301
43.3;3 Kinematic Analysis of the 3UPS-RPU Parallel Robot;302
43.4;4 Workspace Analysis;304
43.5;5 Conclusion;305
43.6;References;305
44;35 End-Effector for Disaster Response Robot with Commonly Structured Limbs and Experiment in Climbing Vertical Ladder;307
44.1;Abstract;307
44.2;1 Introduction;308
44.3;2 Development of End-Effector;309
44.4;3 Calculating the Angle of Each Joint;311
44.5;4 Experiments;312
44.6;5 Conclusions and Future Works;314
44.7;Acknowledgments;314
44.8;References;315
45;Design of a Tendon-Drive Manipulator for Positioning a Probe of a Cooperative Robot System for Fault Diagnosis of Solar Panels at Mega Solar Power Plant;316
45.1;1 Introduction;316
45.2;2 On-Site Inspection for Detecting a Broken Cell;317
45.3;3 Workspace of the Tendon-Drive Parallel Manipulator;319
45.4;4 Design of a Robot Based on Vector-Closure;321
45.5;5 Conclusion;323
45.6;References;323
46;37 Physical Human-Robot Interaction: Increasing Safety by Robot Arm’s Posture Optimization;324
46.1;Abstract;324
46.2;1 Introduction;324
46.3;2 Null Space Concept in Redundant Robot Arm Kinematics;326
46.4;3 Control Design for the Redundant Robot;326
46.5;4 Posture Optimization for the Static Impact Force Minimization;328
46.6;5 Simulation Test Results;329
46.7;6 Conclusions;331
46.8;Acknowledgments;331
46.9;References;331
47;Medical Devices;333
48;38 Assessing the Orbital Stability for Walking with Four Prosthetic Feet at Different Speeds;334
48.1;Abstract;334
48.2;1 Introduction;334
48.3;2 The 2-D Model and Basic Terminology of Human Walking;335
48.4;3 Methods;336
48.5;4 Simulation and Results;338
48.5.1;4.1 Investigating Joint Kinematics by Phase Plane Portraits;338
48.5.2;4.2 Investigating First Return Points by Poincaré Maps;340
48.5.3;4.3 Assessing the Orbital Stability by FM;340
48.6;5 Conclusions;341
48.7;Acknowledgements;341
48.8;References;341
49;39 Development of Rotary Type Movers Discretely Interacting with Supporting Surface and Problems of Control Their Movement;343
49.1;Abstract;343
49.2;1 Introduction;343
49.3;2 Statement of the Problems;345
49.3.1;2.1 Rotary-Orthogonal Mover;346
49.3.2;2.2 Rotary-Pie Mover;347
49.4;3 Mathematical Model of Walking Machine Motion Dynamics with Rotary-Orthogonal Movers;347
49.5;4 Design Scheme and Quasi-static Mathematical Model of Rotary-Pie Mover When Overcoming the Ledge;349
49.6;5 Conclusion;350
49.7;References;351
50;40 Parameter Optimization for Exoskeleton Control System Using Sobol Sequences;352
50.1;Abstract;352
50.2;1 Introduction;352
50.3;2 Model of an Exoskeleton Performing Verticalization;353
50.4;3 Control System;354
50.5;4 Conclusion;358
50.6;Acknowledgments;358
50.7;References;359
51;41 Study of RE-Gait® as the Device That Promotes Walking Using a Two-Dimensional Emotion Map;360
51.1;Abstract;360
51.2;1 Introduction;361
51.3;2 Walking Assistance Apparatus for the Promotion of Exercise;361
51.4;3 Walking Promotion Experiment Using a Two-Dimensional Emotion Map;363
51.5;4 Conclusions;367
51.6;References;367
52;Developement of Road Condition Categorizing System for Manual Wheelchair Using Mahalanobis Distance;368
52.1;1 Introduction;368
52.2;2 Road Disturbances for Wheelchair Users;369
52.3;3 Wheelchair-Type Road Surface Inspection System;370
52.4;4 Characteristics of Time Series Handrim Torque;370
52.5;5 Unit Space and Mahalanobis Distance;372
52.6;6 Measurement and Calculation;372
52.7;7 Conclusion;375
52.8;References;375
53;Control of a Self-adjusting Lower Limb Exoskeleton for Knee Assistance;376
53.1;1 Introduction;376
53.2;2 Mechanical Design;377
53.3;3 Control of the System;379
53.4;4 Experimental Result;381
53.5;5 Conclusion;382
53.6;References;382
54;Innovations and Applications;384
55;44 Pilot Experiments with the Human-Friendly Walking Assisting Robot Vehicle (hWALK);385
55.1;Abstract;385
55.2;1 Introduction;385
55.3;2 Human-Friendly Walking Assisting Robot Vehicle;387
55.4;3 Experiments and Results;389
55.5;4 Conclusions;391
55.6;References;392
56;45 Conceptual Design of a Cable Driven Parallel Mechanism for Planar Earthquake Simulation;393
56.1;Abstract;393
56.2;1 Introduction;394
56.3;2 Composition of the Planar Earthquake Simulator;395
56.4;3 Dynamic Simulation;396
56.5;4 Simulator Prototype;400
56.6;5 Conclusions;400
56.7;References;401
57;Comparison of Dynamic Properties of Two KUKA Lightweight Robots;402
57.1;1 Introduction;402
57.2;2 Model;403
57.2.1;2.1 Algorithm Formulation;404
57.2.2;2.2 Algorithmic Steps;405
57.3;3 Measurements;405
57.4;4 Results;406
57.5;5 Conclusions;408
57.6;References;409
58;47 Comparison of Serial and Quasi-Serial Industrial Robots for Isotropic Tasks;410
58.1;Abstract;410
58.2;1 Introduction;410
58.3;2 Motivation Example;412
58.4;3 Performance Measure for Manipulator Accuracy Evaluation;413
58.5;4 Comparison of Serial and Quasi-Serial Architectures;414
58.6;5 Conclusion;417
58.7;References;417
59;On the Dynamics and Emergency Stop Behavior of Cable-Driven Parallel Robots;419
59.1;1 Introduction;419
59.2;2 The Cable Robots at EXPO 2015;421
59.3;3 System Model;422
59.3.1;3.1 Kinematics;422
59.3.2;3.2 Cable Tension Modeling;422
59.3.3;3.3 Dynamics;423
59.4;4 Emergency Stop Behavior and Model Validation;423
59.5;5 Conclusions;425
59.6;References;425
60;49 Automatic Robot Taping: Strategy and Enhancement;427
60.1;Abstract;427
60.2;1 Introduction;428
60.3;2 Taping Path Planning Strategy;429
60.3.1;2.1 Surface Area Taping Strategy;430
60.3.2;2.2 Modeling of the Taping Process;430
60.4;3 Automation of a Robot Tapping System;432
60.5;4 Execution of the Taping Process;433
60.6;5 Conclusion and Discussion;434
60.7;Acknowledgments;435
60.8;References;435