Parenti-Castelli / Schiehlen | ROMANSY 21 - Robot Design, Dynamics and Control | E-Book | sack.de
E-Book

E-Book, Englisch, Band 569, 436 Seiten, eBook

Reihe: CISM International Centre for Mechanical Sciences

Parenti-Castelli / Schiehlen ROMANSY 21 - Robot Design, Dynamics and Control

Proceedings of the 21st CISM-IFToMM Symposium, June 20-23, Udine, Italy
1. Auflage 2016
ISBN: 978-3-319-33714-2
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark

Proceedings of the 21st CISM-IFToMM Symposium, June 20-23, Udine, Italy

E-Book, Englisch, Band 569, 436 Seiten, eBook

Reihe: CISM International Centre for Mechanical Sciences

ISBN: 978-3-319-33714-2
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark



This proceedings volume contains papers that have been selected after review for oral presentation at ROMANSY 2016, the 21th CISM-IFToMM Symposium on Theory and Practice of Robots and Manipulators. These papers cover advances on several aspects of the wide field of Robotics as concerning Theory and Practice of Robots and Manipulators.ROMANSY 2016 is the 21st event in a series that started in 1973 as one of the first conference activities in the world on Robotics. The first event was held at CISM (International Centre for Mechanical Science) in Udine, Italy on 5-8 September 1973. It was also the first topic conference of IFToMM (International Federation for the Promotion of Mechanism and Machine Science) and it was directed not only to the IFToMM community.
Parenti-Castelli / Schiehlen ROMANSY 21 - Robot Design, Dynamics and Control jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


1;Preface;6
2;Contents;8
3;Keynote Papers;14
4;1 Innovations in Infrastructure Service Robots;15
4.1;Abstract;15
4.2;1 Introduction;16
4.3;2 Mobile High-Rise Spray Painting Robot;17
4.3.1;2.1 Motivation;17
4.3.2;2.2 Overall System;18
4.3.3;2.3 Robotic System Realization;19
4.4;3 Post-construction Quality Assessment Robot;20
4.4.1;3.1 Motivation;20
4.4.2;3.2 Quality Assessment Methodology;21
4.4.3;3.3 Experimental Results;22
4.5;4 Deep Tunnel Sewerage System Inspection Robot;24
4.5.1;4.1 Motivation;24
4.5.2;4.2 Overall System;24
4.5.3;4.3 System Designs;25
4.6;5 Conclusions and Discussion;26
4.7;Acknowledgments;26
4.8;References;27
5;2 The New Robotics Age: Meeting the Physical Interactivity Challenge;29
5.1;Abstract;29
6;Kinematics for Robotics;31
7;Robust Inverse Kinematics at Position Level by Means of the Virtual Redundant Axis Method;32
7.1;1 Introduction;32
7.2;2 State of the Art;33
7.2.1;2.1 Problem Formulation;33
7.2.2;2.2 WDLS Method with Feedback Correction;34
7.3;3 Virtual Redundant Axis Method;35
7.3.1;3.1 VRA at Velocity Level;36
7.3.2;3.2 VRA at Position Level;37
7.4;4 Experimental Results;38
7.5;5 Conclusions;39
7.6;References;39
8;Redundancy Resolution of a 9 DOF Serial Manipulator Under Hard Task Constraints;41
8.1;1 Introduction;41
8.2;2 Task Definition;44
8.3;3 Null Space Constraints;44
8.4;4 Null Space Transport;46
8.5;5 Conclusions;47
8.6;References;47
9;5 Geometry and Direct Kinematics of Six-DOF Three-Limbed Parallel Manipulator;49
9.1;Abstract;49
9.2;1 Introduction;49
9.3;2 Geometry of the PM 3CCC;50
9.4;3 Direct Kinematics;54
9.5;4 Conclusions;55
9.6;References;55
10;6 Learning Global Inverse Kinematics Solutions for a Continuum Robot;57
10.1;Abstract;57
10.2;1 Introduction;57
10.3;2 Formulation of the Inverse Kinematics Learning Problem;59
10.4;3 Training the Neural Network;60
10.5;4 Simulations and Analysis;62
10.6;5 Conclusion;63
10.7;Acknowledgement;63
10.8;References;64
11;7 A Study of a Wheel Shape for Increasing Climbing Ability of Slopes and Steps;65
11.1;Abstract;65
11.2;1 Introduction;66
11.3;2 Overall Design of WAMOT;67
11.4;3 A Study on a New Wheel Shape;67
11.4.1;3.1 A Study of Climbing Steps;67
11.4.2;3.2 A Study of Climbing Slopes;68
11.4.3;3.3 A Study on the Number of Notches;69
11.4.4;3.4 A Study of the Edge Shape of the Notch;71
11.5;4 Verification;73
11.6;5 Discussion;73
11.7;6 Conclusions;74
11.8;References;74
12;Position Kinematics of a 3-underlineRRS Parallel Manipulator;75
12.1;1 Introduction;75
12.2;2 Position Analysis;76
12.3;3 Numerical Example;81
12.4;4 Conclusion;81
12.5;References;81
13;9 Kinematic Analysis of a Single-Loop Translational Manipulator;83
13.1;Abstract;83
13.2;1 Introduction;83
13.3;2 Position Analysis;85
13.4;3 Instantaneous Kinematics;86
13.5;4 Conclusions;88
13.6;Acknowledgments;89
13.7;References;89
14;10 A Measure of the Distance Between Two Rigid-Body Poses Based on the Use of Platonic Solids;90
14.1;Abstract;90
14.2;1 Introduction;90
14.3;2 Formulation of the Proposed Distance Metric;92
14.4;3 Distance Metric Properties;95
14.5;4 Position and Dimension of the Tetrahedron;95
14.6;5 Conclusions;97
14.7;References;97
15;Dynamics for Robotics;99
16;11 Properties of the Dahl Model Applied to Modelling of Static Friction in Closed-Loop Kinematic Chains;100
16.1;Abstract;100
16.2;1 Introduction;100
16.3;2 Constraints Addition-Deletion in Closed-Loop Mechanisms;101
16.4;3 Dahl Friction in Closed-Loop Mechanisms;104
16.5;4 Dahl Friction in Flexible Body Models;106
16.6;5 Conclusions;107
16.7;Acknowledgments;107
16.8;References;107
17;12 Mechanics of Mobile Robots with Mecanum Wheels;109
17.1;Abstract;109
17.2;1 Introduction;109
17.3;2 Kinematics of a Mecanum Wheel;111
17.4;3 Dynamic Equations;113
17.5;4 Optimization of Driving Torques;114
17.6;5 Conclusion;116
17.7;Acknowledgments;116
17.8;References;116
18;13 Design of Partially Balanced 5R Planar Manipulators with Reduced Center of Mass Acceleration (RCMA);118
18.1;Abstract;118
18.2;1 Introduction;118
18.3;2 Shaking Force Balancing;120
18.3.1;2.1 Reaching Similar Accelerations of the End-Effector of the 5R Planar Parallel Manipulator and Its Common Center of Mass;121
18.3.2;2.2 Optimal Control of the Acceleration of the End-Effector of the 5R Planar Manipulator;122
18.4;3 Illustrative Example;123
18.5;4 Conclusions;126
18.6;References;127
19;An Alternative Approach to the Dynamics Analysis of Closed-Loop Mechanisms;128
19.1;1 Introduction;128
19.2;2 Displacement and Kinematic Relations;129
19.3;3 Dynamics Analysis Based on the NOC;131
19.3.1;3.1 The Mathematical Model of the Mechanism;131
19.3.2;3.2 Derivation of the Twist-Shaping Relations;132
19.4;4 Simulation Results;134
19.5;5 Conclusions;135
19.6;References;136
20;15 Lagrangian Based Dynamic Analyses of Delta Robots with Serial-Parallel Architecture;137
20.1;Abstract;137
20.2;1 Introduction;137
20.3;2 Geometric Relations;139
20.4;3 Kinematic Analyses;140
20.5;4 Dynamic Analyses;141
20.6;5 Results;143
20.7;6 Conclusion;145
20.8;References;145
21;Control and Perception of Robots;146
22;Adaptive Model Predictive Control Design for Underactuated Multibody Systems with Uncertain Parameters;147
22.1;1 Introduction;147
22.2;2 Constrained Adaptive Nonlinear Control;148
22.2.1;2.1 Feedback Linearization;148
22.2.2;2.2 Model Predictive Control;149
22.2.3;2.3 Variable Constraint Mapping;149
22.2.4;2.4 Adaptive Control Using Unscented Kalman Filter;150
22.3;3 Fuzzy Uncertainty Analysis;151
22.4;4 Application: Underactuated Manipulator with Passive Joint;152
22.5;5 Conclusion;153
22.6;References;154
23;Control and Experiments with Energy-Saving SCARA Robots;155
23.1;1 Introduction;155
23.2;2 Design and Control of Energy Saving Manipulator;156
23.2.1;2.1 Design of Energy Saving Manipulator;157
23.2.2;2.2 Control of Energy Saving Manipulator;158
23.3;3 A Prototype 2DOF Manipulator and Experimental Results;159
23.4;4 Conclusions;162
23.5;References;162
24;Control Design for Pneumatic Manipulation Robot;164
24.1;1 Manipulator ManGo;165
24.2;2 Control System;165
24.2.1;2.1 Control Structure in Matlab;166
24.2.2;2.2 Machine Vision;166
24.3;3 Experiments;169
24.4;4 Conclusion;170
24.5;References;171
25;Adaptive Edge Features Estimation for Humanoid Robot Visual Perception;172
25.1;1 Instruction;172
25.2;2 Related Works;173
25.3;3 Adaptive Straight Line Split;174
25.4;4 Experimental Results;176
25.5;5 Conclusion and Future Works;177
25.6;References;178
26;Disturbance Rejection Controller for Biped Walking Using Real-Time ZMP Regulation;179
26.1;1 Introduction;180
26.2;2 ZMP Regulation;180
26.2.1;2.1 ZMP Modification;181
26.2.2;2.2 Foot Placement with ZMP Increment;183
26.3;3 Modification of CoM Trajectory;184
26.4;4 Simulations and Experiments;184
26.4.1;4.1 Simulations;184
26.4.2;4.2 Experiments;187
26.5;5 Conclusion;187
26.6;References;187
27;Novel Robot Design;189
28;Human-Powered Robotics---Concept and One-DOF Prototype;190
28.1;1 Introduction;190
28.1.1;1.1 Background and Research Purpose;190
28.1.2;1.2 Relevant Studies;191
28.2;2 Design and Principle of Operation;192
28.3;3 Controller;193
28.4;4 Experimental Results;194
28.5;5 Conclusions and Future Work;196
28.6;References;196
29;22 Gripping Tests on an Underactuated Self-adapting Hand Prototype;198
29.1;Abstract;198
29.2;1 Introduction;198
29.3;2 The Design of the Hand;200
29.4;3 Gripping Tests on the Prototype;202
29.5;4 Conclusions;204
29.6;References;204
30;Combined Structural and Dimensional Synthesis of Serial Robot Manipulators;206
30.1;1 Introduction;206
30.2;2 Generation of Suitable Architectures and Extraction of the Optimisation Parameters;207
30.3;3 Kinematics Modelling;209
30.4;4 Optimisation Procedure;210
30.4.1;4.1 Performance Indices;211
30.4.2;4.2 Optimisation Problem;211
30.5;5 Exemplary Results;212
30.6;6 Conclusions;213
30.7;References;214
31;Development of the Acroboter Service Robot Platform;216
31.1;1 Introduction;216
31.2;2 Concept of the Structural Design;217
31.3;3 Dynamic Modelling Approach;218
31.4;4 Control Issues;219
31.4.1;4.1 Singularities;219
31.4.2;4.2 Underactuation;220
31.4.3;4.3 Redundancy;220
31.4.4;4.4 Control Algorithm;221
31.5;5 Summary;222
31.6;References;222
32;The Inversion of Motion of Bristle Bots: Analytical and Experimental Analysis;224
32.1;1 Introduction;224
32.2;2 Setting, Modelling, and Analysis;225
32.3;3 Experiments;229
32.4;4 Conclusions and Outlook;231
32.5;References;231
33;Design of a Compliant Environmentally Interactive Snake-Like Manipulator;232
33.1;1 Introduction;232
33.2;2 Methods;233
33.2.1;2.1 The Compliant Joint;233
33.2.2;2.2 Pseudo Rigid Body Modelling;234
33.2.3;2.3 Finite Element Analysis;235
33.2.4;2.4 Optimization;235
33.2.5;2.5 Prototype;235
33.3;3 Experiments;236
33.3.1;3.1 Conditions;236
33.3.2;3.2 Results;237
33.3.3;3.3 Discussion;237
33.4;4 Conclusion;238
33.5;References;239
34;Humanoid Robots;240
35;27 Joint Mechanism Coping with Both of Active Pushing-off and Joint Stiffness Based on Human;241
35.1;Abstract;241
35.2;1 Introduction;242
35.3;2 Knee Joint Mechanism Coping with Both Active Pushing-off and Joint Stiffness;243
35.3.1;2.1 Joint Requirements for Running;243
35.3.2;2.2 Design of Knee Joint Mechanism;243
35.3.3;2.3 Design of CFRP Leaf Spring;245
35.3.4;2.4 A Bipedal Robot with the Developed Joint Mechanism;246
35.4;3 Evaluation of the Developed Joint Mechanism;246
35.4.1;3.1 Evaluation of CFRP Leaf Spring;246
35.4.2;3.2 Hopping with an Active Pushing-off and Joint Stiffness;247
35.5;4 Conclusion;248
35.6;Acknowledgements;248
35.7;References;248
36;Design of a Dexterous Hand for a Multi-hand Task;249
36.1;1 Introduction;249
36.2;2 In-Hand Manipulation and Dexterity;250
36.3;3 Dexterous Hand Design Methodology;250
36.4;4 Orange Peeler Hand;251
36.4.1;4.1 Motivation;251
36.4.2;4.2 Task Definition;251
36.4.3;4.3 Structural Synthesis;252
36.4.4;4.4 Dimensional Synthesis;253
36.5;5 Results and Implementation;254
36.6;6 Conclusions;255
36.7;References;255
37;Facial Expression Design for the Saxophone Player Robot WAS-4;257
37.1;1 Introduction;258
37.2;2 Humanoid Saxophonist Player Robot WAS-4;259
37.3;3 Method;260
37.3.1;3.1 Design and Development of the Facial Expressions Mechanism;260
37.3.2;3.2 Facial Expression During Saxophone Performance;260
37.3.3;3.3 Mechanical Movement Specifications;261
37.3.4;3.4 Design of the Eyebrows and Eyelids Mechanisms;262
37.4;4 Experiments and Results;262
37.5;5 Conclusions;263
37.6;References;264
38;30 Disturbance Force Generator for Biped Robots;265
38.1;Abstract;265
38.2;1 Introduction;266
38.3;2 Mechanical Structure of Disturbance Force Generator;266
38.3.1;2.1 Preliminary Analysis;266
38.3.2;2.2 Mechanical Design;266
38.4;3 Control System for Disturbance Force Generator;268
38.5;4 Experimental Tests and Consideration;269
38.6;5 Conclusions;271
38.7;Acknowledgments;271
38.8;References;271
39;31 LARMbot: A New Humanoid Robot with Parallel Mechanisms;273
39.1;Abstract;273
39.2;1 Introduction;273
39.3;2 Parallel Architectures in Human Anatomy;274
39.4;3 The LARMbot;275
39.5;4 Prototype and Testing;277
39.6;5 Conclusions;280
39.7;References;280
40;Human-Inspired Humanoid Balancing and Posture Control in Frontal Plane;282
40.1;1 Introduction;282
40.2;2 Generalization of DEC Concept to Frontal Plane;284
40.2.1;2.1 The DEC Concept;284
40.2.2;2.2 Lower Body Kinematics;285
40.3;3 Experiments;286
40.4;4 Results;287
40.5;5 Conclusion and Future Work;288
40.6;References;288
41;Compliant Actuator Dedicated for Humanoidal Robot---Design Concept;290
41.1;1 Introduction;290
41.2;2 Design Considerations on Elastic Actuators;291
41.2.1;2.1 Parameters Selection;292
41.3;3 Simulation Research;293
41.3.1;3.1 Control System;293
41.3.2;3.2 Developed Model;294
41.3.3;3.3 Results;294
41.4;4 Conclusion and Future Works;295
41.5;References;296
42;Service Robots;298
43;Design of a 3-UPS-RPU Parallel Robot for Knee Diagnosis and Rehabilitation;299
43.1;1 Introduction;300
43.2;2 Conceptual Design;301
43.2.1;2.1 Design Specification;301
43.2.2;2.2 Parallel Robot with 2T2R Degree of Freedom;301
43.3;3 Kinematic Analysis of the 3UPS-RPU Parallel Robot;302
43.4;4 Workspace Analysis;304
43.5;5 Conclusion;305
43.6;References;305
44;35 End-Effector for Disaster Response Robot with Commonly Structured Limbs and Experiment in Climbing Vertical Ladder;307
44.1;Abstract;307
44.2;1 Introduction;308
44.3;2 Development of End-Effector;309
44.4;3 Calculating the Angle of Each Joint;311
44.5;4 Experiments;312
44.6;5 Conclusions and Future Works;314
44.7;Acknowledgments;314
44.8;References;315
45;Design of a Tendon-Drive Manipulator for Positioning a Probe of a Cooperative Robot System for Fault Diagnosis of Solar Panels at Mega Solar Power Plant;316
45.1;1 Introduction;316
45.2;2 On-Site Inspection for Detecting a Broken Cell;317
45.3;3 Workspace of the Tendon-Drive Parallel Manipulator;319
45.4;4 Design of a Robot Based on Vector-Closure;321
45.5;5 Conclusion;323
45.6;References;323
46;37 Physical Human-Robot Interaction: Increasing Safety by Robot Arm’s Posture Optimization;324
46.1;Abstract;324
46.2;1 Introduction;324
46.3;2 Null Space Concept in Redundant Robot Arm Kinematics;326
46.4;3 Control Design for the Redundant Robot;326
46.5;4 Posture Optimization for the Static Impact Force Minimization;328
46.6;5 Simulation Test Results;329
46.7;6 Conclusions;331
46.8;Acknowledgments;331
46.9;References;331
47;Medical Devices;333
48;38 Assessing the Orbital Stability for Walking with Four Prosthetic Feet at Different Speeds;334
48.1;Abstract;334
48.2;1 Introduction;334
48.3;2 The 2-D Model and Basic Terminology of Human Walking;335
48.4;3 Methods;336
48.5;4 Simulation and Results;338
48.5.1;4.1 Investigating Joint Kinematics by Phase Plane Portraits;338
48.5.2;4.2 Investigating First Return Points by Poincaré Maps;340
48.5.3;4.3 Assessing the Orbital Stability by FM;340
48.6;5 Conclusions;341
48.7;Acknowledgements;341
48.8;References;341
49;39 Development of Rotary Type Movers Discretely Interacting with Supporting Surface and Problems of Control Their Movement;343
49.1;Abstract;343
49.2;1 Introduction;343
49.3;2 Statement of the Problems;345
49.3.1;2.1 Rotary-Orthogonal Mover;346
49.3.2;2.2 Rotary-Pie Mover;347
49.4;3 Mathematical Model of Walking Machine Motion Dynamics with Rotary-Orthogonal Movers;347
49.5;4 Design Scheme and Quasi-static Mathematical Model of Rotary-Pie Mover When Overcoming the Ledge;349
49.6;5 Conclusion;350
49.7;References;351
50;40 Parameter Optimization for Exoskeleton Control System Using Sobol Sequences;352
50.1;Abstract;352
50.2;1 Introduction;352
50.3;2 Model of an Exoskeleton Performing Verticalization;353
50.4;3 Control System;354
50.5;4 Conclusion;358
50.6;Acknowledgments;358
50.7;References;359
51;41 Study of RE-Gait® as the Device That Promotes Walking Using a Two-Dimensional Emotion Map;360
51.1;Abstract;360
51.2;1 Introduction;361
51.3;2 Walking Assistance Apparatus for the Promotion of Exercise;361
51.4;3 Walking Promotion Experiment Using a Two-Dimensional Emotion Map;363
51.5;4 Conclusions;367
51.6;References;367
52;Developement of Road Condition Categorizing System for Manual Wheelchair Using Mahalanobis Distance;368
52.1;1 Introduction;368
52.2;2 Road Disturbances for Wheelchair Users;369
52.3;3 Wheelchair-Type Road Surface Inspection System;370
52.4;4 Characteristics of Time Series Handrim Torque;370
52.5;5 Unit Space and Mahalanobis Distance;372
52.6;6 Measurement and Calculation;372
52.7;7 Conclusion;375
52.8;References;375
53;Control of a Self-adjusting Lower Limb Exoskeleton for Knee Assistance;376
53.1;1 Introduction;376
53.2;2 Mechanical Design;377
53.3;3 Control of the System;379
53.4;4 Experimental Result;381
53.5;5 Conclusion;382
53.6;References;382
54;Innovations and Applications;384
55;44 Pilot Experiments with the Human-Friendly Walking Assisting Robot Vehicle (hWALK);385
55.1;Abstract;385
55.2;1 Introduction;385
55.3;2 Human-Friendly Walking Assisting Robot Vehicle;387
55.4;3 Experiments and Results;389
55.5;4 Conclusions;391
55.6;References;392
56;45 Conceptual Design of a Cable Driven Parallel Mechanism for Planar Earthquake Simulation;393
56.1;Abstract;393
56.2;1 Introduction;394
56.3;2 Composition of the Planar Earthquake Simulator;395
56.4;3 Dynamic Simulation;396
56.5;4 Simulator Prototype;400
56.6;5 Conclusions;400
56.7;References;401
57;Comparison of Dynamic Properties of Two KUKA Lightweight Robots;402
57.1;1 Introduction;402
57.2;2 Model;403
57.2.1;2.1 Algorithm Formulation;404
57.2.2;2.2 Algorithmic Steps;405
57.3;3 Measurements;405
57.4;4 Results;406
57.5;5 Conclusions;408
57.6;References;409
58;47 Comparison of Serial and Quasi-Serial Industrial Robots for Isotropic Tasks;410
58.1;Abstract;410
58.2;1 Introduction;410
58.3;2 Motivation Example;412
58.4;3 Performance Measure for Manipulator Accuracy Evaluation;413
58.5;4 Comparison of Serial and Quasi-Serial Architectures;414
58.6;5 Conclusion;417
58.7;References;417
59;On the Dynamics and Emergency Stop Behavior of Cable-Driven Parallel Robots;419
59.1;1 Introduction;419
59.2;2 The Cable Robots at EXPO 2015;421
59.3;3 System Model;422
59.3.1;3.1 Kinematics;422
59.3.2;3.2 Cable Tension Modeling;422
59.3.3;3.3 Dynamics;423
59.4;4 Emergency Stop Behavior and Model Validation;423
59.5;5 Conclusions;425
59.6;References;425
60;49 Automatic Robot Taping: Strategy and Enhancement;427
60.1;Abstract;427
60.2;1 Introduction;428
60.3;2 Taping Path Planning Strategy;429
60.3.1;2.1 Surface Area Taping Strategy;430
60.3.2;2.2 Modeling of the Taping Process;430
60.4;3 Automation of a Robot Tapping System;432
60.5;4 Execution of the Taping Process;433
60.6;5 Conclusion and Discussion;434
60.7;Acknowledgments;435
60.8;References;435



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.