E-Book, Englisch, Band 170, 388 Seiten, eBook
Pardalos / Rasskazova / Vrahatis Black Box Optimization, Machine Learning, and No-Free Lunch Theorems
1. Auflage 2021
ISBN: 978-3-030-66515-9
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark
E-Book, Englisch, Band 170, 388 Seiten, eBook
Reihe: Springer Optimization and Its Applications
ISBN: 978-3-030-66515-9
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark
Zielgruppe
Research
Autoren/Hrsg.
Weitere Infos & Material
Learning enabled constrained black box optimization (Archetti).- Black-box optimization: Methods and applications (Hasan).- Tuning algorithms for stochastic black-box optimization: State of the art and future perspectives (Bartz-Beielstein).- Quality diversity optimization: A novel branch of stochastic optimization (Chatzilygeroudis).- Multi-objective evolutionary algorithms: Past, present and future (Coello C.A).- Black-box and data driven computation (Du).- Mathematically rigorous global optimization and fuzzy optimization: A brief comparison of paradigms, methods, similarities and differences (Kearfott).- Optimization under Uncertainty Explains Empirical Success of Deep Learning Heuristics (Kreinovich).- Variable neighborhood programming as a tool of machine learning (Mladenovic).- Non-lattice covering and quanitization of high dimensional sets (Zhigljavsky).- Finding effective SAT partitionings via black-box optimization (Semenov).- The No Free Lunch Theorem: What are its main implications for the optimization practice? ( Serafino).- What is important about the No Free Lunch theorems? (Wolpert).