Papula | Mathematische Formelsammlung | Buch | 978-3-528-24442-2 | sack.de

Buch, Deutsch, 335 Seiten, Format (B × H): 156 mm x 244 mm, Gewicht: 570 g

Papula

Mathematische Formelsammlung

für Ingenieure und Naturwissenschaftler Mit zahlreichen Abbildungen und Rechenbeispielen und einer ausführlichen Integraltafel
3. Auflage 1990
ISBN: 978-3-528-24442-2
Verlag: Vieweg+Teubner Verlag

für Ingenieure und Naturwissenschaftler Mit zahlreichen Abbildungen und Rechenbeispielen und einer ausführlichen Integraltafel

Buch, Deutsch, 335 Seiten, Format (B × H): 156 mm x 244 mm, Gewicht: 570 g

ISBN: 978-3-528-24442-2
Verlag: Vieweg+Teubner Verlag


Auffinden der gewlinschten Information. VI Vorwort Eine Bitte des Autors FUr Hinweise und Anregungen - insbesondere auch aus dem Kreis der Studenten - bin ich stets dankbar.

Papula Mathematische Formelsammlung jetzt bestellen!

Zielgruppe


Research


Autoren/Hrsg.


Weitere Infos & Material


I Allgemeine Grundlagen aus Algebra, Arithmetik und Geometrie.- 1 Grundlegende Begriffe über Mengen.- 2 Rechnen mit reellen Zahlen.- 3 Elementare (endliche) Reihen.- 4 Gleichungen mit einer Unbekannten.- 5 Lehrsätze aus der elementaren Geometrie.- 6 Ebene geometrische Körper (Planimetrie).- 7 Räumliche geometrische Körper (Stereometrie).- 8 Koordinatensysteme.- II Vektorrechnung.- 1 Grundlegende Begriffe.- 2 Komponentendarstellung eines Vektors.- 3 Vektoroperationen.- 4 Ableitung eines Vektors nach einem Parameter.- 5 Anwendungen.- III Funktionen und Kurven.- 1 Grundlegende Begriffe.- 2 Allgemeine Funktionseigenschaften.- 3 Grenzwert und Stetigkeit einer Funktion.- 4 Ganzrationale Funktionen (Polynomfunktionen).- 5 Gebrochenrationale Funktionen.- 6 Potenz- und Wurzelfunktionen.- 7 Trigonometrische Funktionen.- 8 Arkusfunktionen.- 9 Exponentialfunktionen.- 10 Logarithmusfunktionen.- 11 Hyperbelfunktionen.- 12 Areafunktionen.- 13 Kegelschnitte.- 14 Spezielle Kurven.- IV Differentialrechnung.- 1 Differenzierbarkeit einer Funktion.- 2 Erste Ableitung der elementaren Funktionen (Tabelle).- 3 Ableitungsregeln.- 4 Anwendungen.- V Integralrechnung.- 1 Bestimmtes Integral.- 2 Unbestimmtes Integral.- 3 Integrationsmethoden.- 4 Uneigentliche Integrale.- 5 Anwendungen.- VI Unendliche Reihen, Taylor- und Fourier-Reihen.- 1 Unendliche Reihen.- 2 Potenzreihen.- 3 Taylor-Reihen.- 4 Fourier-Reihen.- VII Lineare Algebra.- 1 Matrizen.- 2 Determinanten.- 3 Lineare Gleichungssysteme.- VIII Komplexe Zahlen und Funktionen.- 1 Darstellungsformen einer komplexen Zahl.- 2 Grundrechenarten für komplexe Zahlen.- 3 Potenzieren.- 4 Radizieren (Wurzelziehen).- 5 Natürlicher Logarithmus einer komplexen Zahl.- 6 Ortskurven.- 7 Komplexe Funktionen.- 8 Anwendungen in der Schwingungslehre.- IX Differential- und Integralrechnung für Funktionen von mehreren Variablen.- 1 Funktionen von mehreren Variablen und ihre Darstellung.- 2 Partielle Differentiation.- 3 Mehrfachintegrale.- 4 Linien- oder Kurvenintegrale.- X Gewöhnliche Differentialgleichungen.- 1 Grundlegende Begriffe.- 2 Differentialgleichungen 1. Ordnung.- 3 Differentialgleichungen 2. Ordnung.- 4 Anwendungen.- XI Fehler- und Ausgleichsrechnung.- 1 Gaußsche Normalverteilung.- 2 Mittelwert und mittlerer Fehler einer Meßreihe.- 3 Gaußsches Fehlerfortpflanzungsgesetz.- 4 Ausgleichskurven.- XII Laplace-Transformation.- 1 Grundlegende Begriffe.- 2 Allgemeine Eigenschaften der Laplace-Transformation.- 3 Laplace-Transformierte einer periodischen Funktion.- 4 Laplace-Transformierte spezieller Funktionen (Impulse).- 5 Anwendung: Lösung einer linearen Differentialgleichung mit konstanten Koeffizienten.- 6 Tabelle spezieller Laplace-Transformationen.- Anhang: Integraltafel.- 21 Integrale mit einer Arkusfunktion.- 29 Integrale mit einer Areafunktion.- Sachwortverzeichnis.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.