Buch, Englisch, Band 296, 526 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 820 g
Buch, Englisch, Band 296, 526 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 820 g
Reihe: Graduate Texts in Mathematics
ISBN: 978-3-031-19709-3
Verlag: Springer Nature Switzerland
After the first two chapters conveniently recalling prerequisites from abstract algebra and non-Archimedean analysis, Chapter 3 introduces Drinfeld modules and the key notions of isogenies and torsion points. Over the next four chapters, Drinfeld modules are studied in settings of various fields of arithmetic importance, culminating in the case of global fields. Throughout, numerous number-theoretic applications are discussed, and the analogies between classical and function field arithmetic are emphasized.
Drinfeld Modules guides readers from the basics to research topics in function field arithmetic, assuming only familiarity with graduate-level abstract algebra as prerequisite. With exercises of varying difficulty included in each section, the book is designed to be used as the primary textbook for a graduate course on the topic, and may also provide a supplementary reference for courses in algebraic number theory, elliptic curves, and related fields. Furthermore, researchers in algebra and number theory will appreciate it as a self-contained reference on the topic.
Zielgruppe
Graduate
Autoren/Hrsg.
Fachgebiete
Weitere Infos & Material
Preface.- Acknowledgements.- Notation and Conventions.- Chapter 1. Algebraic Preliminaries.- Chapter 2. Non-Archimedean Fields.- Chapter 3. Basic Properties of Drinfeld Modules.- Chapter 4. Drinfeld Modules over Finite Fields.- Chapter 5. Analytic Theory of Drinfeld Modules.- Chapter 6. Drinfeld Modules over Local Fields.- Chapter 7. Drinfeld Modules over Global Fields.- Appendix A. Drinfeld modules for general function rings.- Appendix B. Notes on exercises.- Bibliography.- Index.