Papikian | Drinfeld Modules | Buch | 978-3-031-19709-3 | sack.de

Buch, Englisch, Band 296, 526 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 820 g

Reihe: Graduate Texts in Mathematics

Papikian

Drinfeld Modules


2023
ISBN: 978-3-031-19709-3
Verlag: Springer Nature Switzerland

Buch, Englisch, Band 296, 526 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 820 g

Reihe: Graduate Texts in Mathematics

ISBN: 978-3-031-19709-3
Verlag: Springer Nature Switzerland


This textbook offers an introduction to the theory of Drinfeld modules, mathematical objects that are fundamental to modern number theory.
After the first two chapters conveniently recalling prerequisites from abstract algebra and non-Archimedean analysis, Chapter 3 introduces Drinfeld modules and the key notions of isogenies and torsion points. Over the next four chapters, Drinfeld modules are studied in settings of various fields of arithmetic importance, culminating in the case of global fields. Throughout, numerous number-theoretic applications are discussed, and the analogies between classical and function field arithmetic are emphasized.
Drinfeld Modules guides readers from the basics to research topics in function field arithmetic, assuming only familiarity with graduate-level abstract algebra as prerequisite. With exercises of varying difficulty included in each section, the book is designed to be used as the primary textbook for a graduate course on the topic, and may also provide a supplementary reference for courses in algebraic number theory, elliptic curves, and related fields. Furthermore, researchers in algebra and number theory will appreciate it as a self-contained reference on the topic.

Papikian Drinfeld Modules jetzt bestellen!

Zielgruppe


Graduate


Autoren/Hrsg.


Weitere Infos & Material


Preface.- Acknowledgements.- Notation and Conventions.- Chapter 1. Algebraic Preliminaries.- Chapter 2. Non-Archimedean Fields.- Chapter 3. Basic Properties of Drinfeld Modules.- Chapter 4. Drinfeld Modules over Finite Fields.- Chapter 5. Analytic Theory of Drinfeld Modules.- Chapter 6. Drinfeld Modules over Local Fields.- Chapter 7. Drinfeld Modules over Global Fields.- Appendix A. Drinfeld modules for general function rings.- Appendix B. Notes on exercises.- Bibliography.- Index.


Mihran Papikian received his Ph.D. from the University of Michigan in 2003. After a post-doctoral position at Stanford University, he joined the Mathematics Department of the Pennsylvania State University as a tenure-track assistant professor in 2007, becoming full professor in 2020. His research interests lie in arithmetic geometry and number theory, with an emphasis on the theory of Drinfeld modules, modular varieties, and elliptic curves. He has taught graduate courses in algebra, number theory, and various specialized topics, including Drinfeld modules.





Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.