Pankov | G-Convergence and Homogenization of Nonlinear Partial Differential Operators | Buch | 978-0-7923-4720-0 | sack.de

Buch, Englisch, Band 422, 258 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 1250 g

Reihe: Mathematics and Its Applications

Pankov

G-Convergence and Homogenization of Nonlinear Partial Differential Operators


1997
ISBN: 978-0-7923-4720-0
Verlag: Springer Netherlands

Buch, Englisch, Band 422, 258 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 1250 g

Reihe: Mathematics and Its Applications

ISBN: 978-0-7923-4720-0
Verlag: Springer Netherlands


Various applications of the homogenization theory of partial differential equations resulted in the further development of this branch of mathematics, attracting an increasing interest of both mathematicians and experts in other fields. In general, the theory deals with the following: Let Ak be a sequence of differential operators, linear or nonlinepr. We want to examine the asymptotic behaviour of solutions uk to the equation Auk = f, as k ~ =, provided coefficients of Ak contain rapid oscillations. This is the case, e. g. when the coefficients are of the form a(e/x), where the function a(y) is periodic and ek ~ 0 ask~=. Of course, of oscillation, like almost periodic or random homogeneous, are of many other kinds interest as well. It seems a good idea to find a differential operator A such that uk ~ u, where u is a solution of the limit equation Au = f Such a limit operator is usually called the homogenized operator for the sequence Ak. Sometimes, the term "averaged" is used instead of "homogenized". Let us look more closely what kind of convergence one can expect for uk. Usually, we have some a priori bound for the solutions. However, due to the rapid oscillations of the coefficients, such a bound may be uniform with respect to k in the corresponding energy norm only. Therefore, we may have convergence of solutions only in the weak topology of the energy space.

Pankov G-Convergence and Homogenization of Nonlinear Partial Differential Operators jetzt bestellen!

Zielgruppe


Research


Autoren/Hrsg.


Weitere Infos & Material


1 G-convergence of Abstract Operators.- 2 Strong G-convergence of Nonlinear Elliptic Operators.- 3 Homogenization of Elliptic Operators.- 4 Nonlinear Parabolic Operators.- A Homogenization of Nonlinear Difference Schemes.- A.1 Mesh Functions.- A.2 G-convergence.- A.3 Homogenization.- B Open Problems.- References.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.