Pandey / Sharma | Advances in Remote Sensing for Natural Resource Monitoring | Buch | 978-1-119-61597-2 | sack.de

Buch, Englisch, 528 Seiten, Format (B × H): 175 mm x 250 mm, Gewicht: 1072 g

Pandey / Sharma

Advances in Remote Sensing for Natural Resource Monitoring


1. Auflage 2021
ISBN: 978-1-119-61597-2
Verlag: Wiley

Buch, Englisch, 528 Seiten, Format (B × H): 175 mm x 250 mm, Gewicht: 1072 g

ISBN: 978-1-119-61597-2
Verlag: Wiley


Sustainable management of natural resources is an urgent need, given the changing climatic conditions of Earth systems. The ability to monitor natural resources precisely and accurately is increasingly important. New and advanced remote sensing tools and techniques are continually being developed to monitor and manage natural resources in an effective way. Remote sensing technology uses electromagnetic sensors to record, measure and monitor even small variations in natural resources. The addition of new remote sensing datasets, processing techniques and software makes remote sensing an exact and cost-effective tool and technology for natural resource monitoring and management.

Advances in Remote Sensing for Natural Resources Monitoring provides a detailed overview of the potential applications of advanced satellite data in natural resource monitoring. The book determines how environmental and - ecological knowledge and satellite-based information can be effectively combined to address a wide array of current natural resource management needs. Each chapter covers different aspects of remote sensing approach to monitor the natural resources effectively, to provide a platform for decision and policy. This important work:

- Provides comprehensive coverage of advances and applications of remote sensing in natural resources monitoring
- Includes new and emerging approaches for resource monitoring with case studies
- Covers different aspects of forest, water, soil- land resources, and agriculture
- Provides exemplary illustration of themes such as glaciers, surface runoff, ground water potential and soil moisture content with temporal analysis
- Covers blue carbon, seawater intrusion, playa wetlands, and wetland inundation with case studies
- Showcases disaster studies such as floods, tsunami, showing where remote sensing technologies have been used

This edited book is the first volume of the book series Advances in Remote Sensing for Earth Observation.

Pandey / Sharma Advances in Remote Sensing for Natural Resource Monitoring jetzt bestellen!

Weitere Infos & Material


List of Abbreviations xix

List of Contributors xxix

List of Editors xxxv

Preface xxxvii

Section I General Section 1

1 Introduction to Natural Resource Monitoring Using Remote Sensing Technology 3
Prem Chandra Pandey and Laxmi Kant Sharma

1.1 Introduction 3

References 6

2 Spectroradiometry: Types, Data Collection, and Processing 9
Prem Chandra Pandey, Manish Kumar Pandey, Ayushi Gupta, Prachi Singh, and Prashant K. Srivastava

2.1 Introduction 9

2.2 Literature Review 10

2.3 The Types of Spectroradiometry 12

2.3.1 Spectroradiometry 13

2.3.2 Photometry and Colorimetry 13

2.4 Principle of the Spectroradiometer 13

2.5 Radiance Measurement 16

2.5.1 Factors Affecting Spectral Reflectance Measurements 17

2.5.2 Data Processing 18

2.5.2.1 Radiometric Calibration 18

2.5.2.2 Reflectance/Transmittance 19

2.5.2.3 Radiance/Irradiance/Emissivity 20

2.5.2.4 1st Derivative 20

2.5.2.5 2nd Derivative 20

2.5.2.6 Parabolic Correction 20

2.5.2.7 Other Methods 21

2.6 Data Collection 21

2.7 Generation of the Metadata 21

2.7.1 Continuum Removal 22

2.8 Applications of ASD in Agriculture and Forestry 23

2.9 Future Importance, Limitations, and Recommendations 23

Acknowledgment 24

References 24

3 Geometric-Optical Modeling of Bidirectional Reflectance Distribution Function for Trees and Forest Stands 28
Nour El Islam Bachari, Salim Lamine, and Khaled Meharrar

3.1 Introduction 28

3.2 Model Description 29

3.2.1 Sunlit Surfaces 31

3.2.2 Shaded Surfaces 31

3.2.3 Forest Stand Modeling 32

3.3 General Shape of the Apparent Luminance 33

3.4 Simulation and Discussion 35

References 39

Section II Vegetation Resource Monitoring (Forest and Agriculture) 43

4 Mapping Stand Age of Indonesian Rubber Plantation Using Fully Polarimetric L-Band Synthetic Aperture Radar 45
Bambang H. Trisasongko

4.1 Introduction 45

4.2 Methodology 46

4.2.1 Test Site and Dataset 46

4.2.2 Processing 47

4.3 Results and Discussion 48

4.3.1 Scattering Behavior 48

4.3.2 Classification Using Backscatter Coefficients 50

4.3.3 Classification Using Model-Based Decomposition 51

4.3.4 The Role of Combining Datasets 51

4.3.5 The Best Subset 52

4.4 Conclusion 55

Acknowledgments 55

References 55

5 Responses of Multi-Frequency Remote Sensing to Forest Biomass 58
Suman Sinha, A. Santra, Laxmi Kant Sharma, Anup Kumar Das, C. Jeganathan, Shiv Mohan, S.S. Mitra, and M.S. Nathawat

5.1 Background 58

5.1.1 Optical Remote Sensing 59

5.1.2 Microwave Remote Sensing 62

5.1.3 LiDAR Remote/Sensing 63

5.1.4 Synergic Use of Multi-Sensor Data 65

5.2 A Case Study in the Mixed Tropical Deciduous Forest of India 66

5.2.1 Study Area 66

5.2.2 Datasets 67

5.2.3 Methodology 67

5.2.4 Results 67

5.2.5 Conclusion 67

5.3 Uncertainties and Future Scope of Research in Biomass Estimation 71

5.3.1 Summary 71

Acknowledgment 72

References 72

6 Crop Water Requirements Analysis Using Geoinformatics Techniques in the Water-Scarce Semi-Arid Watershed 81
K. Ibrahim-Bathis, S.A. Ahmed, V. Nischitha, and M.A. Mohammed-Aslam

6.1 Introduction 81

6.1.1 Crop Calendar 82

6.1.2 Crop Type Classification 83

6.1.3 Crop Water Requirements 86

6.1.4 CROPWAT Model 86

6.1.5 Meteorological Data 86

6.2 Reference Evapotranspiration (ETo) 86

6.2.1 Effective Rainfall 88

6.2.2 Crop Coefficient (Kc) 89

6.3 Soil Data 89

6.4 Crop Evapotranspiration (ETc) 90

6.5 Irrigation Water Requirement 90

6.6 Conclusion 91

Acknowledgment 92

References 92

7 Biophysical Characterization and Monitoring Large-Scale Water and Vegetation Anomalies by Remote Sensing in the Agricultural Growing Areas of the Brazilian Semi-Arid Region 94
Antônio Heriberto de Castro Teixeira, Janice Freitas Leivas, Edson Patto Pacheco, Edlene Aparecida Monteiro Garçon, and Celina Maki Takemura

7.1 Introduction 94

7.2 Material and Methods 96

7.3 Results and Discussion 99

7.4 Conclusions 104

Acknowledgments 105

References 105

Section III Soil and Land Resource Monitoring 111

8 SMOS L4 Downscaled Soil Moisture Product Evaluation Over a Two Year – Period in a Mediterranean Setting 113
Patrick N.L. Lamptey, George P. Petropoulos, and Prashant K. Srivastava

8.1 Introduction 113

8.2 Experimental Setup 116

8.3 Datasets Description 116

8.3.1 SMOS L4 SM Product (1 km) 116

8.3.2 In-situ Soil Moisture Data 118

8.4 Methodology 119

8.4.1 SSM Extraction from SMOS 119

8.4.2 Pre-Processing of SMOS 119

8.4.3 Agreement Evaluation 119

8.5 Results 120

8.5.1 Station ES-CPA 120

8.5.2 Station N9 122

8.5.3 Station M5 123

8.5.4 Station H7 123

8.5.5 Station K9 124

8.6 Discussion 126

8.7 Conclusions 127

Acknowledgments 128

References 128

9 Estimating Urban Population Density Using Remotely Sensed Imagery Products 132
Dimitris Triantakonstantis, Demetris Stathakis, and Zoi Papadopoulou

9.1 Introduction 132

9.2 Spatial Data Disaggregation–MAUP Problem 134

9.2.1 Spatial Interpolation 135

9.3 Materials and Methods 136

9.3.1 Study Area and Data Sources 136

9.3.2 Areal Interpolation Using Cokriging 137

9.4 Areal Interpolation Using Geographically Weighted Regression (GWR) 138

9.5 Results and Discussion 139

9.6 Conclusions 144

References 145

10 Impact of Land Cover Change on Surface Runoff 150
Apoorv Sood, S.K. Ghosh, and Priyadarshi Upadhyay

10.1 Introduction 150

10.2 Literature 151

10.3 Methodology 152

10.3.1 Supervised Classification 152

10.3.2 SWAT Model 153

10.3.3 SWAT Inputs 153

10.3.4 SWAT Outputs 154

10.4 Methodology 154

10.5 Study Area 154

10.5.1 Justification for Study Area Selection 154

10.6 Data Used 155

10.6.1 Weather Data 156

10.6.2 Satellite Data 158

10.6.2.1 LANDSAT Dataset 158

10.6.3 Digital Elevation Model 158

10.6.4 Soil Map 158

10.7 Results and Discussion 158

10.7.1 LU/LC Classification 158

10.7.2 LU/LC Map 1987 161

10.7.3 LU/LC Map 1997 161

10.7.4 LU/LC Map 2007 161

10.7.5 LU/LC Map 2017 161

10.7.6 Watershed Delineation 163

10.8 SWAT Results 164

10.8.1 HRU Analysis Report 164

10.8.2 Runoff Generated in Sub Basins 164

10.9 Conclusion 167

Acknowledgment 168

References 168

11 Delineation of Groundwater Potential Zone and Site Suitability of Rainwater Harvesting Structures Using Remote Sensing and In Situ Geophysical Measurements 170
Prachi Singh, Akash Anand, Prashant K. Srivastava, Arjun Singh, and Prem Chandra Pandey

11.1 Introduction 170

11.2 Study Area 171

11.3 Data Used and Methodology 172

11.3.1 Data Used 172

11.3.2 Methodology 173

11.3.3 Vertical Electrical Sounding 173

11.3.4 Weightage Calculation 174

11.4 Results and Discussion 175

11.4.1 Land Use and Land Cover (LULC) 175

11.4.2 Soil 175

11.4.3 Hydro-Geomorphology 176

11.4.4 Lithology 176

11.4.5 Drainage Density 178

11.4.6 Lineament Density 178

11.5 Resistivity Survey 179

11.5.1 VES Survey and Cross Section 179

11.5.2 Interpolated Subsurface Soil Profile 181

11.5.3 Groundwater Potential Zone 1


Dr Prem C. Pandey is Assistant Professor in the Center for Environmental Sciences & Engineering, Shiv Nadar University, UP, India.

Dr Laxmi K. Sharma is Associate Professor, at the Department of Environmental Science, Central University of Rajasthan, Ajmer, India.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.