E-Book, Englisch, 0 Seiten
Pan / Chen Static Green's Functions in Anisotropic Media
Erscheinungsjahr 2015
ISBN: 978-1-316-23609-3
Verlag: Cambridge University Press
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)
E-Book, Englisch, 0 Seiten
ISBN: 978-1-316-23609-3
Verlag: Cambridge University Press
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)
This book presents basic theory on static Green's functions in general anisotropic magnetoelectroelastic media including detailed derivations based on the complex variable method, potential method, and integral transforms. Green's functions corresponding to the reduced cases are also presented including those in anisotropic and transversely isotropic piezoelectric and piezomagnetic media, and in purely anisotropic elastic, transversely isotropic elastic and isotropic elastic media. Problems include those in three-dimensional, (two-dimensional) infinite, half, and biomaterial spaces (planes). While the emphasis is on the Green's functions related to the line and point force, those corresponding to the important line and point dislocation are also provided and discussed. This book provides a comprehensive derivation and collection of the Green's functions in the concerned media, and as such, it is an ideal reference book for researchers and engineers, and a textbook for both students in engineering and applied mathematics.
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik Mathematik Numerik und Wissenschaftliches Rechnen Angewandte Mathematik, Mathematische Modelle
- Technische Wissenschaften Technik Allgemein Mathematik für Ingenieure
- Mathematik | Informatik EDV | Informatik Informatik
- Mathematik | Informatik Mathematik Mathematische Analysis Elementare Analysis und Allgemeine Begriffe
- Technische Wissenschaften Maschinenbau | Werkstoffkunde Technische Mechanik | Werkstoffkunde
Weitere Infos & Material
1. Introduction; 2. Governing equations; 3. Green's functions in elastic isotropic full and bimaterial planes; 4. Green's functions in magnetoelectroelastic full and bimaterial planes; 5. Green's functions in elastic isotropic full and bimaterial spaces; 6. Green's functions in a transversely isotropic magnetoelectroelastic full space; 7. Green's functions in a transversely isotropic magnetoelectroelastic biomaterial; 8. Green's functions in an anisotropic magnetoelectroelastic full space; 9. Green's functions in an anisotropic magnetoelectroelastic bimaterial space.