Buch, Englisch, Band 2049, 324 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 1060 g
Advanced Lectures
Buch, Englisch, Band 2049, 324 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 1060 g
Reihe: Lecture Notes in Computer Science
ISBN: 978-3-540-42490-1
Verlag: Springer Berlin Heidelberg
This book presents the capabilities of machine learning methods and ideas on how these methods could be used to solve real-world problems. The first ten chapters assess the current state of the art of machine learning, from symbolic concept learning and conceptual clustering to case-based reasoning, neural networks, and genetic algorithms. The second part introduces the reader to innovative applications of ML techniques in fields such as data mining, knowledge discovery, human language technology, user modeling, data analysis, discovery science, agent technology, finance, etc.
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik EDV | Informatik Informatik Logik, formale Sprachen, Automaten
- Mathematik | Informatik EDV | Informatik Informatik Künstliche Intelligenz Wissensbasierte Systeme, Expertensysteme
- Mathematik | Informatik EDV | Informatik Informatik Künstliche Intelligenz Maschinelles Lernen
- Mathematik | Informatik EDV | Informatik Daten / Datenbanken Zeichen- und Zahlendarstellungen
- Wirtschaftswissenschaften Wirtschaftswissenschaften Unternehmensgeschichte, Einzelne Branchen und Unternehmer
- Mathematik | Informatik EDV | Informatik Daten / Datenbanken Datenkompression, Dokumentaustauschformate
Weitere Infos & Material
Methods.- Comparing Machine Learning and Knowledge Discovery in DataBases: An Application to Knowledge Discovery in Texts.- Learning Patterns in Noisy Data: The AQ Approach.- Unsupervised Learning of Probabilistic Concept Hierarchies.- Function Decomposition in Machine Learning.- How to Upgrade Propositional Learners to First Order Logic: A Case Study.- Case-Based Reasoning.- Genetic Algorithms in Machine Learning.- Pattern Recognition and Neural Networks.- Model Class Selection and Construction: Beyond the Procrustean Approach to Machine Learning Applications.- Integrated Architectures for Machine Learning.- The Computational Support of Scientic Discovery.- Support Vector Machines: Theory and Applications.- Pre- and Post-processing in Machine Learning and Data Mining.- Machine Learning in Human Language Technology.- Machine Learning for Intelligent Information Access.- Machine Learning and Intelligent Agents.- Machine Learning in User Modeling.- Data Mining in Economics, Finance, and Marketing.- Machine Learning in Medical Applications.- Machine Learning Applications to Power Systems.- Intelligent Techniques for Spatio-Temporal Data Analysis in Environmental Applications.