Palamodov | Reconstructive Integral Geometry | Buch | 978-3-7643-7129-6 | sack.de

Buch, Englisch, Band 98, 164 Seiten, HC runder Rücken kaschiert, Format (B × H): 160 mm x 241 mm, Gewicht: 442 g

Reihe: Monographs in Mathematics

Palamodov

Reconstructive Integral Geometry

Buch, Englisch, Band 98, 164 Seiten, HC runder Rücken kaschiert, Format (B × H): 160 mm x 241 mm, Gewicht: 442 g

Reihe: Monographs in Mathematics

ISBN: 978-3-7643-7129-6
Verlag: Springer


These lecture notes treat polynomial identity rings from both the combinatorial and structural points of view. The former studies the ideal of polynomial identities satisfied by a ring. The latter studies the properties of rings which satisfy a polynomial identity. The greater part of recent research in polynomial identity rings is about combinatorial questions, and the combinatorial part of the lecture notes gives an up-to-date account of recent research. On the other hand, the main structural results have been known for some time, and the emphasis there is on a presentation accessible to newcomers to the subject.The intended audience is graduate students in algebra, and researchers in algebra, combinatorics and invariant theory.
Palamodov Reconstructive Integral Geometry jetzt bestellen!

Zielgruppe


Research


Autoren/Hrsg.


Weitere Infos & Material


1 Distributions and Fourier Transform.- 1.1 Introduction.- 1.2 Distributions and generalized functions.- 1.3 Tempered distributions.- 1.4 Homogeneous distributions.- 1.5 Manifolds and differential forms.- 1.6 Push down and pull back.- 1.7 More on the Fourier transform.- 1.8 Bandlimited functions and interpolation.- 2 Radon Transform.- 2.1 Properties.- 2.2 Inversion formulae.- 2.3 Alternative formulae.- 2.4 Range conditions.- 2.5 Frequency analysis.- 2.6 Radon transform of differential forms.- 3 The Funk Transform.- 3.1 Factorable mappings.- 3.2 Spaces of constant curvature.- 3.3 Inversion of the Funk transform.- 3.4 Radon’s inversion via Funk’s inversion.- 3.5 Unified form.- 3.6 Funk-Radon transform and wave fronts.- 3.7 Integral transform of boundary discontinuities.- 3.8 Nonlinear artifacts.- 3.9 Pizetti formula for arbitrary signature.- 4 Reconstruction from Line Integrals.- 4.1 Pencils of lines and John’s equation.- 4.2 Sources at infinity.- 4.3 Reduction to the Radon transform.- 4.4 Rays tangent to a surface.- 4.5 Sources on a proper curve.- 4.6 Reconstruction from plane integrals of sources.- 4.7 Line integrals of differential forms.- 4.8 Exponential ray transform.- 4.9 Attenuated ray transform.- 4.10 Inversion formulae.- 4.11 Range conditions.- 5 Flat Integral Transform.- 5.1 Reconstruction problem.- 5.2 Odd-dimensional subspaces.- 5.3 Even dimension.- 5.4 Range of the flat transform.- 5.5 Duality for the Funk transform.- 5.6 Duality in Euclidean space.- 6 Incomplete Data Problems.- 6.1 Completeness condition.- 6.2 Radon transform of Gabor functions.- 6.3 Reconstruction from limited angle data.- 6.4 Exterior problem.- 6.5 The parametrix method.- 7 Spherical Transform and Inversion.- 7.1 Problems.- 7.2 Arc integrals in the plane.- 7.3 Hemispherical integralsin space.- 7.4 Incomplete data.- 7.5 Spheres centred on a sphere.- 7.6 Spheres tangent to a manifold.- 7.7 Characteristic Cauchy problem.- 7.8 Fundamental solution for the adjoint operator.- 8 Algebraic Integral Transform.- 8.1 Problems.- 8.2 Special cases.- 8.3 Multiplicative differential equations.- 8.4 Funk transform of Leray forms.- 8.5 Differential equations for hypersurface integrals.- 8.6 Howard’s equations.- 8.7 Range of differential operators.- 8.8 Decreasing solutions of Maxwell’s system.- 8.9 Symmetric differential forms.- 9 Notes.- Notes to Chapter 1.- Notes to Chapter 2.- Notes to Chapter 3.- Notes to Chapter 4.- Notes to Chapter 5.- Notes to Chapter 6.- Notes to Chapter 7.- Notes to Chapter 8.


Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.