Buch, Englisch, 509 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 791 g
Reihe: Internet of Things
Buch, Englisch, 509 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 791 g
Reihe: Internet of Things
ISBN: 978-3-030-87061-4
Verlag: Springer International Publishing
The book discusses the evolution of future generation technologies through Internet of Things (IoT) in the scope of Artificial Intelligence (AI). The main focus of this volume is to bring all the related technologies in a single platform, so that undergraduate and postgraduate students, researchers, academicians, and industry people can easily understand the AI algorithms, machine learning algorithms, and learning analytics in IoT-enabled technologies. This book uses data and network engineering and intelligent decision support system-by-design principles to design a reliable AI-enabled IoT ecosystem and to implement cyber-physical pervasive infrastructure solutions. This book brings together some of the top IoT-enabled AI experts throughout the world who contribute their knowledge regarding different IoT-based technology aspects.
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik EDV | Informatik Angewandte Informatik
- Technische Wissenschaften Elektronik | Nachrichtentechnik Nachrichten- und Kommunikationstechnik
- Mathematik | Informatik EDV | Informatik Informatik Mensch-Maschine-Interaktion Ambient Intelligence, RFID, Internet der Dinge
- Technische Wissenschaften Energietechnik | Elektrotechnik Elektrotechnik
Weitere Infos & Material
Part – I. Architecture, Systems, and Services.- Chapter1. Artificial Intelligence-based Internet of Things for Industry 5.0.- Chapter2. IoT Ecosystem: Functioning Framework, Hierarchy of Knowledge and Intelligence.- Chapter3. Artificial Neural Networks and Support Vector Machine for IoT.- Chapter4. The Role of Machine Learning Techniques in Internet of Things Based Cloud Applications.- Chapter5. Deep Learning Frameworks for Internet of Things.- Chapter6. Fog-Cloud enabled Internet of Things using Extended Classifier System (XCS).- Chapter7. Convolutional Neural Network (CNN) – Based Signature Verification via Cloud-enabled Raspberry Pi System.- Chapter8. Machine to Machine (M2M), Radio Frequency Identification (RFID), Software-defined Networking (SDN): Facilitators of Internet of Things.- Chapter9. Architecture, Generative Model, Deep Reinforcement Learning for IoT Applications: Deep Learning Perspective.- Chapter10. Enabling Inference and Training of Deep Learning Models for AI Applications on IoT Edge Devices.- Chapter11. Non-volatile Memory based Internet of Things: A survey.- Chapter12. Integration of AI and IoT approaches for evaluating cyber Security risk on smart city.- Chapter13. Cognitive Internet of Things: Challenges and Solutions.- Part – II. Applications.- Chapter14. An AI Approach to Rebalance Bike Sharing Systems with Adaptive User Incentive.- Chapter15. IoT-driven Bayesian Learning: A Case Study of Reducing Road Accidents of Commercial Vehicles on Highways.- Chapter16. On the Integration of AI and IoT Systems: A Case Study of Airport Smart Parking.- Chapter17. Vision-based End-to-End Deep Learning for Autonomous Driving in Next-Generation IoT Systems.- Chapter18. A Study on the Application of Bayesian Learning and Decision Trees IoT-enabled system in Post-harvest Storage.