Buch, Englisch, 1007 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 1521 g
A Handbook
Buch, Englisch, 1007 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 1521 g
ISBN: 978-3-540-67995-0
Verlag: Springer Berlin Heidelberg
Computational engineering is the treatment of engineering tasks with computers. It is based on computational mathematics, which is presented here in a comprehensive handbook. Engineers and scientists who deal with engineering tasks have to handle large amounts of information, which must be created and structured in a systematic manner. This demands a high level of abstraction and therefore knowledge of the mathematical foundations. From the existing rich repertoire of mathematical theories and methods, the fundamentals of engineering computation are selected and presented in a coherent fashion. They are brought into a suitable order for specific engineering purposes, and their significance for typical applications is shown. The relevant definitions, notations and theories are presented in a durable form which is independent of the fast development of information and communication technology.
Zielgruppe
Research
Fachgebiete
- Mathematik | Informatik EDV | Informatik Professionelle Anwendung Computer-Aided Design (CAD)
- Mathematik | Informatik Mathematik Topologie Algebraische Topologie
- Technische Wissenschaften Technik Allgemein Mathematik für Ingenieure
- Mathematik | Informatik EDV | Informatik Angewandte Informatik Computeranwendungen in Wissenschaft & Technologie
- Mathematik | Informatik EDV | Informatik Informatik Mathematik für Informatiker
- Technische Wissenschaften Technik Allgemein Computeranwendungen in der Technik
Weitere Infos & Material
Logic.- 1.1 Representation of Thought.- 1.2 Elementary Concepts.- 1.3 Propositional Logic.- 1.4 Predicate Logic.- 1.5 Proofs and Axioms.- Set Theory.- 2.1 Sets.- 2.2 Algebra of Sets.- 2.3 Relations.- 2.4 Types of Relations.- 2.5 Mappings.- 2.6 Types of Mappings.- 2.7 Cardinality and Countability.- 2.8 Structures.- Algebraic Structures.- 3.1 Introduction.- 3.2 Inner Operations.- 3.3 Sets with One Operation.- 3.4 Sets with Two Operations.- 3.5 Vector Spaces.- 3.6 Linear Mappings.- 3.7 Vector and Matrix Algebra.- Ordinal Structures.- 4.1 Introduction.- 4.2 Ordered Sets.- 4.3 Extreme Elements.- 4.4 Ordered Sets with Extremality Properties.- 4.5 Mappings of Ordered Sets.- 4.6 Properties of Ordered Sets.- 4.7 Ordered Cardinal Numbers.- Topological Structures.- 5.1 Introduction.- 5.2 Topological Spaces.- 5.3 Bases and Generating Sets.- 5.4 Metric Spaces.- 5.5 Point Sets in Topological Spaces.- 5.6 Topological Mappings.- 5.7 Construction of Topologies.- 5.8 Connectedness of Sets.- 5.9 Separation Properties.- 5.10 Convergence.- 5.11 Compactness.- 5.12 Continuity of Real Functions.- Number System.- 6.1 Introduction.- 6.2 Natural Numbers.- 6.3 Integers.- 6.4 Rational Numbers.- 6.5 Real Numbers.- 6.6 Complex Numbers.- 6.7 Quaternions.- Groups.- 7.1 Introduction.- 7.2 Groups and Subgroups.- 7.3 Types of Groups.- 7.4 Class Structure.- 7.5 Group Structure.- 7.6 Abelian Groups.- 7.7 Permutations.- 7.8 General Groups.- 7.9 Unique Decomposition of Abelian Groups.- Graphs.- 8.1 Introduction.- 8.2 Algebra of Relations.- 8.3 Classification of Graphs.- 8.4 Structure of Graphs.- 8.5 Paths in Networks.- 8.6 Network Flows.- Tensors.- 9.1 Introduction.- 9.2 Vector Algebra.- 9.3 Tensor Algebra.- 9.4 Tensor Analysis.- Stochastics.- 10.1 Introduction.- 10.2 Random Events.- 10.3 Random Variables.- 10.4 Random Vectors.- 10.5 Random Processes.