E-Book, Englisch, Band 39, 342 Seiten, eBook
Reihe: Progress in Nonlinear Differential Equations and Their Applications
The Ginzburg-andau Model
E-Book, Englisch, Band 39, 342 Seiten, eBook
Reihe: Progress in Nonlinear Differential Equations and Their Applications
ISBN: 978-1-4612-1386-4
Verlag: Birkhäuser Boston
Format: PDF
Kopierschutz: 1 - PDF Watermark
Zielgruppe
Research
Autoren/Hrsg.
Weitere Infos & Material
1 Qualitative Aspects of Ginzburg-Landau Equations.- 1.1 The integrable case.- 1.2 The strongly repulsive case.- 1.3 The existence result.- 1.4 Uniqueness results.- 2 Elliptic Operators in Weighted Hölder Spaces.- 2.1 Function spaces.- 2.2 Mapping properties of the Laplacian.- 2.3 Applications to nonlinear problems.- 3 The Ginzburg-Landau Equation in ?.- 3.1 Radially symmetric solution on ?.- 3.2 The linearized operator about the radially symmetric solution.- 3.3 Asymptotic behavior of solutions of the homogeneous problem.- 3.4 Bounded solution of the homogeneous problem.- 3.5 More solutions to the homogeneous equation.- 3.6 Introduction of the scaling factor.- 4 Mapping Properties of L?.- 4.1 Consequences of the maximum principle in weighted spaces.- 4.2 Function spaces.- 4.3 A right inverse for L? in B1 \ {0}.- 5 Families of Approximate Solutions with Prescribed Zero Set.- 5.1 The approximate solution ?.- 5.2 A 3N dimensional family of approximate solutions.- 5.3 Estimates.- 5.4 Appendix.- 6 The Linearized Operator about the Approximate Solution ?.- 6.1 Definition.- 6.2 The interior problem.- 6.3 The exterior problem.- 6.4 Dirichlet to Neumann mappings.- 6.5 The linearized operator in all ?.- 6.6 Appendix.- 7 Existence of Ginzburg-Landau Vortices.- 7.1 Statement of the result.- 7.2 The linear mapping DM(0,0,0).- 7.3 Estimates of the nonlinear terms.- 7.4 The fixed point argument.- 7.5 Further information about the branch of solutions.- 8 Elliptic Operators in Weighted Sobolev Spaces.- 8.1 General overview.- 8.2 Estimates for the Laplacian.- 8.3 Estimates for some elliptic operator in divergence form.- 9 Generalized Pohozaev Formula for ?-Conformal Fields.- 9.1 The Pohozaev formula in the classical framework.- 9.2 Comparing Ginzburg-Landau solutions using pohozaev’s argument.- 9.3 ?-conformal vector fields.- 9.4 Conservation laws.- 9.5 Uniqueness results.- 9.6 Dealing with general nonlinearities.- 10 The Role of Zeros in the Uniqueness Question.- 10.1 The zero setof solutions of Ginzburg-Landau equations.- 10.2 A uniqueness result.- 11 Solving Uniqueness Questions.- 11.1 Statement of the uniqueness result.- 11.2 Proof of the uniqueness result.- 11.3 A conjecture of F. Bethuel, H. Brezis and F. Hélein.- 12 Towards Jaffe and Taubes Conjectures.- 12.1 Statement of the result.- 12.2 Gauge invariant Ginzburg-Landau critical points with one zero.- 12.3 Proof of Theorem 12.2.- References.- Index of Notation.