Oxenius | Kinetic Theory of Particles and Photons | E-Book | sack.de
E-Book

E-Book, Englisch, Band 20, 356 Seiten, eBook

Reihe: Springer Series in Electronics and Photonics

Oxenius Kinetic Theory of Particles and Photons

Theoretical Foundations of Non-LTE Plasma Spectroscopy
1986
ISBN: 978-3-642-70728-5
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark

Theoretical Foundations of Non-LTE Plasma Spectroscopy

E-Book, Englisch, Band 20, 356 Seiten, eBook

Reihe: Springer Series in Electronics and Photonics

ISBN: 978-3-642-70728-5
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark



Many laboratory and astrophysical plasmas show deviations from local ther modynamic equilibrium (LTE). This monograph develops non-LTE plasma spectroscopy as a kinetic theory of particles and photons, considering the radiation field as a photon gas whose distribution function (the radiation in tensity) obeys a kinetic equation (the radiative transfer equation), just as the distribution functions of particles obey kinetic equations. Such a unified ap proach provides clear insight into the physics of non-LTE plasmas. Chapter 1 treats the principle of detailed balance, of central importance for understanding the non-LTE effects in plasmas. Chapters 2, 3 deal with kinetic equations of particles and photons, respectively, followed by a chapter on the fluid description of gases with radiative interactions. Chapter 5 is devoted to the H theorem, and closes the more general first part of the book. The last two chapters deal with more specific topics. After briefly discuss ing optically thin plasmas, Chap. 6 treats non-LTE line transfer by two-level atoms, the line profile coefficients of three-level atoms, and non-Maxwellian electron distribution functions. Chapter 7 discusses topics where momentum exchange between matter and radiation is crucial: the approach to thermal equilibrium through interaction with blackbody radiation, radiative forces, and Compton scattering. A number of appendices have been added to make the book self-contained and to treat more special questions. In particular, Appendix B contains an in troductory discussion of atomic line profile coefficients.

Oxenius Kinetic Theory of Particles and Photons jetzt bestellen!

Zielgruppe


Research


Autoren/Hrsg.


Weitere Infos & Material


1. Thermal Equilibrium and Detailed Balance.- 1.1 Introductory Remarks.- 1.2 The Principle of Detailed Balance.- 1.3 Proof of the Principle of Detailed Balance for a Special Case.- 1.4 Derivation of Thermal Distribution Functions from Detailed Balance.- 1.4.1 Maxwell Distribution.- 1.4.2 Boltzmann Distribution.- 1.4.3 Saha Distribution.- 1.4.4 Planck Distribution.- 1.5 Validity of the Reciprocity Relation w(i?f)= w(f?i).- 1.6 Explicit Forms of the Reciprocity Relation w(i?f) = w(f?i).- 1.6.1 Collisional Excitation and De-Excitation.- 1.6.2 Collisional Ionization and Three-Body Recombination.- 1.6.3 Autoionization and Radiationless Capture.- 1.6.4 Line Emission and Absorption.- 1.6.5 Photoionization and Radiative Recombination.- 1.6.6 Free-Free Emission and Absorption.- 1.6.7 Two-Photon Emission and Absorption.- 2. Kinetic Equations of Particles.- 2.1 Kinetic Equations.- 2.2 Elastic Collision Terms.- 2.2.1 Boltzmann Collision Terms.- 2.2.2 Fokker-Planck Collision Terms.- 2.2.3 General Properties of Elastic Collision Terms.- 2.3 Inelastic Collision Terms.- 2.3.1 Collisional Excitation and De-Excitation (Atoms).- 2.3.2 Collisional Ionization and Three-Body Recombination (Atoms).- 2.3.3 Collisional Excitation and De-Excitation (Electrons).- 2.3.4 Collisional Ionization and Three-Body Recombination (Electrons).- 2.3.5 Dielectronic Recombination.- 2.4 Collision Terms Due to Radiative Processes.- 2.4.1 Line Emission and Absorption.- 2.4.2 Photoionization and Radiative Recombination (Atoms).- 2.4.3 Photoionization and Radiative Recombination (Electrons).- 2.4.4 Bremsstrahlung and Inverse Bremsstrahlung (Electrons).- 3. The Kinetic Equation of Photons.- 3.1 The Equation of Radiative Transfer.- 3.2 Emission and Absorption.- 3.2.1 Bound-Bound Transitions.- 3.2.2 Free-Bound Transitions.- 3.2.3 Free-Free Transitions.- 3.3 Scattering.- 3.3.1 Scattering by Stationary Particles.- 3.3.2 Scattering by Moving Particles.- 4. Moment Equations and Fluid Description.- 4.1. Moment Equations for Particles.- 4.1.1 One Particle Type a.- 4.1.2 One Particle Species A.- 4.1.3 Several Particle Species.- 4.2 Moment Equations for Photons.- 4.3 Fluid Description of a Gas.- 4.4 Fluid Description of a Gas with Radiative Interactions.- 4.4.1 Preliminary Discussion.- 4.4.2 Covariant Form of the Transfer Equation and the Energy-Momentum Tensor of the Radiation Field.- 4.4.3 Radiation Pressure, Radiative Heat Conductivity, Radiative Viscosity.- 4.4.4 Hydrodynamic Equations with Radiative Terms.- 5. H Theorem for Gases and Radiation.- 5.1 Entropy and Entropy Production.- 5.1.1 General Definitions.- 5.1.2 Entropy of a Classical Gas.- 5.1.3 Entropy of Radiation.- 5.2 Proof of the H Theorem.- 5.2.1 Elastic Collisions (Identical Particles).- 5.2.2 Elastic Collisions (Unlike Particles).- 5.2.3 Emission and Absorption.- 6. Energy Exchange Between Matter and Radiation.- 6.1 General Remarks.- 6.2 Optically Thin Plasmas.- 6.2.1 Physical Reactions.- 6.2.2 Some Illustrative Results.- 6.3 Non-LTE Line Transfer by Two-Level Atoms (I): Basic Relations.- 6.3.1 Kinetic Equation of Photons.- 6.3.2 Kinetic Equations of Two-Level Atoms.- 6.3.3 Approximations.- 6.3.4 Line Profile Coefficients.- 6.3.5 Redistribution Functions.- 6.3.6 Stimulated Emission.- 6.4 Non-LTE Line Transfer by Two-Level Atoms (II): Results.- 6.4.1 The Standard Problem.- 6.4.2 Dimensionless Quantities.- 6.4.3 Boundary Conditions.- 6.4.4 Complete Redistribution: Static Approximation.- 6.4.5 Complete Redistribution: Diffusion Approximation.- 6.4.6 Exact Solutions.- 6.5 Multilevel Atoms.- 6.5.1 Atomic Line Profile Coefficients of a Three-Level Atom.- 6.5.2 Laboratory Line Profile Coefficients of a Three-Level Atom.- 6.6 Non-Maxwellian Electron Distribution Functions.- 7. Momentum Exchange Between Matter and Radiation.- 7.1 General Remarks.- 7.2 Approach to Thermal Equilibrium Through Interaction with Blackbody Radiation.- 7.2.1 Line Radiation of Two-Level Atoms.- 7.2.2 Thomson Scattering of Electrons.- 7.3 Radiative Forces.- 7.3.1 Scattering.- 7.3.2 Bound-Bound Transitions.- 7.3.3 Free-Bound Transitions.- 7.4 Compton Scattering.- 7.4.1 Kinematics of Compton Scattering.- 7.4.2 Reciprocity Relation.- 7.4.3 Compton Collision Term (Electrons).- 7.4.4 Compton Collision Term (Photons).- 7.4.5 Transformation of Cross Sections.- Appendices.- A. Transformation Formulas for Radiative Quantities.- A.1 Transformation Formulas.- A.2 Is the Distribution Function a Relativistic Invariant?.- B. Atomic Absorption and Emission Profiles.- B.1 Definitions and General Remarks.- B.2 Two-Level Atom (I): One Level Broadened.- B.3 Two-Level Atom (II): Two Levels Broadened.- B.4 Three-Level Atom.- B.5 Atomic Redistribution Functions.- B.6 Absorption and Emission Profiles in Terms of Generalized Redistribution Functions.- C. The Boltzmann Equation.- D. Brownian Motion and Fokker-Planck Equation.- D.1 Brownian Motion.- D.2 Fokker-Planck Equation.- E. Reciprocity Relations for Inelastic Collisions with Heavy Particles.- E.1 Excitation and De-Excitation.- E.2 Ionization and Three-Body Recombination. Dissociation and Recombination.- F. Elastic Collision Term of the Standard Problem.- General Bibliography.- References.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.