Ou / Mukherjee | Survivable Optical WDM Networks | E-Book | www2.sack.de
E-Book

E-Book, Englisch, 182 Seiten

Reihe: Optical Networks

Ou / Mukherjee Survivable Optical WDM Networks


1. Auflage 2010
ISBN: 978-0-387-24499-0
Verlag: Springer US
Format: PDF
Kopierschutz: 1 - PDF Watermark

E-Book, Englisch, 182 Seiten

Reihe: Optical Networks

ISBN: 978-0-387-24499-0
Verlag: Springer US
Format: PDF
Kopierschutz: 1 - PDF Watermark



Covers these key topics: Shared-mesh protection for optical WDM networks. Survivable traffic grooming for hierarchical optical WDM networks. Survivable data over next-generation SONET/SDH with inverse multiplexing.

Canhui (Sam) Ou received a Ph.D. degree from the University of California, Davis, in 2004. His technical interests include WDM networks, MPLS, optical Ethernet, and FTTx. He is a Principal Member of Technical Staff at SBC Communications, Inc. He worked at Sprint Advanced Technology Laboratories and Fujitsu Laboratories of America as an intern. Biswanath Mukherjee received a Ph.D. degree from University of Washington, Seattle, in 1987. In 1987, he joined the University of California, Davis, where he has been Professor of computer science since 1995, and served as Chairman of computer science during 1997-2000. He is author of Optical Communication Networks book. He is a Member of the Board of Directors of IPLocks, a Silicon Valley startup company. He has consulted for and served on the Technical Advisory Board of a number of startup companies in optical networking. His research interests include lightwave networks, network security, and wireless networks. Dr. Mukherjee is winner of the 2004 Distinguished Graduate Mentoring Award from UC Davis. He serves or has served on the Editorial Boards of the IEEE/ACM Transactions on Networking, IEEE Network, ACM/Baltzer Wireless Networks (WINET), Photonic Network Communications, and others. He also served as Editor-at-Large for optical networking and communications for the IEEE Communications Society. He served as the Technical Program Chair of the IEEE INFOCOM'96 Conference.

Ou / Mukherjee Survivable Optical WDM Networks jetzt bestellen!

Weitere Infos & Material


1;DISCLAIMER;6
2;Dedication Page;7
3;Table of Contents;8
4;List of Figures;13
5;Preface;18
5.1;The Topic;18
5.2;Intended Audience;19
5.3;Organization of the Book;19
5.4;Feedback;20
6;Acknowledgments;21
7;Chapter 1 INTRODUCTION;23
7.1;1.1 Optical Networking;23
7.1.1;1.1.1 Telecommunication Networks;23
7.1.2;1.1.2 Wavelength-Routed WDM Mesh Networks;24
7.1.3;1.1.3 Survivable WDM Mesh Networks;25
7.2;1.2 An Overview of the Book;27
7.2.1;1.2.1 Shared-Path Protection;27
7.2.2;1.2.2 Sub-Path Protection for Scalability and Fast Recovery;27
7.2.3;1.2.3 Segment Protection;27
7.2.4;1.2.4 Survivable Traffic Grooming-Dedicated Protection;28
7.2.5;1.2.5 Survivable Traffic Grooming-Shared Protection;28
7.2.6;1.2.6 Survivable Virtual Concatenation for Data over SONET/SDH;29
8;Chapter 2 SHARED-PATH PROTECTION FOR RESOURCE EFFICIENCY;30
8.1;2.1 Introduction;30
8.2;2.2 Problem Statement and Complexity Analysis;32
8.2.1;2.2.1 Problem Statement;32
8.2.2;2.2.2 ComplexityAnalysis;34
8.3;2.3 Compute A FEasible Solution (CAFES);35
8.3.1;2.3.1 Trap Topology;36
8.3.2;2.3.2 Backup-Sharing-Caused Trap;36
8.4;2.4 Optimization (OPT);37
8.5;2.5 Illustrative Numerical Results;41
8.5.1;2.5.1 Blocking Probability;42
8.5.2;2.5.2 Percentage of Unreachable Blocking;43
8.5.3;2.5.3 Resource Overbuild;44
8.5.4;2.5.4 Average Hop Distance;44
8.6;2.6 Conclusion;45
8.7;APPENDIX 2.A: NP-Completeness of DSPLP Problem;46
9;Chapter 3 SUB-PATHPROTECTIONFORSCALABILITYAND FAST RECOVERY;50
9.1;3.1 Introduction;50
9.1.1;3.1.1 Related Work;50
9.1.2;3.1.2 Multi-Domain Optical Networks and Our Proposal;52
9.1.3;3.1.3 Organization;53
9.2;3.2 Sub-Path Protection;53
9.2.1;3.2.1 An Illustrative Example;53
9.2.2;3.2.2 Different Cases;54
9.2.3;3.2.3 Domain-Border-Node (DBN) Failures;55
9.2.4;3.2.4 Problem Statement;56
9.2.5;3.2.5 Proof of NP-Completeness;57
9.3;3.3 ILP Formulation for RWA with Sub-Path Protection;58
9.3.1;3.3.1 Notations;59
9.3.2;3.3.2 Sub-Path Protection: Split ILP Formulation;59
9.3.2.1;3.3.2.1 Part I: Routing;59
9.3.2.2;3.3.2.2 Part II: Wavelength Assignment;62
9.3.2.3;3.3.3 Equivalence of the Split ILP and the Original Problem;64
9.4;3.4 Heuristic;64
9.4.1;3.4.1 Phase 1: Find Shortest Path Pair for Each Lightpath with Respect to Domain Constraints;65
9.4.2;3.4.2 Phase 2: Wavelength Assignment;67
9.4.3;3.4.3 Phase 3: Optimization;67
9.4.4;3.4.4 Complexity;70
9.5;3.5 Results and Discussions;70
9.5.1;3.5.1 Recovery Time;71
9.5.2;3.5.2 Survivability;73
9.5.3;3.5.3 Scalability;74
9.5.4;3.5.4 Resource Utilization;75
9.6;3.6 Conclusion;78
9.7;APPENDIX 3.A: NP-Completeness of RWA for Shared-Path Protection;78
9.8;APPENDIX 3.B: NP-Completeness of Optimal Backup Routing (OBR);80
10;Chapter 4 SEGMENT PROTECTION FOR BANDWIDTH EFFICIENCY AND DIFFERENTIATED QUALITY OF PROTECTION;81
10.1;4.1 Introduction;81
10.2;4.2 Generalized Segment Protection;82
10.2.1;4.2.1 Generalized Segment Protection;82
10.2.2;4.2.2 The GSP Heuristic;84
10.2.2.1;4.2.2.1 Notations;84
10.2.2.2;4.2.2.2 GSP Heuristic;85
10.2.2.3;4.2.2.3 Computational Complexity;86
10.2.3;4.2.3 Illustrative Numerical Results;88
10.2.3.1;4.2.3.1 Blocking Probability;88
10.2.3.2;4.2.3.2 Performance Gain;90
10.2.3.3;4.2.3.3 Protection-Switching Time;90
10.2.3.4;4.2.3.4 Controland Management Complexity;91
10.2.3.5;4.2.3.5 Resource Efficiency;92
10.3;4.3 Providing Differentiated Quality of Protection (QoP) Based on Generalized Segment Protection;93
10.3.1;4.3.1 Motivation;94
10.3.2;4.3.2 GSP_QoP Heuristic;95
10.3.3;4.3.3 Illustrative Numerical Results;97
10.3.3.1;4.3.3.1 Blocking probability under different values of E;97
10.3.3.2;4.3.3.2 Blocking probability under different values of H b;100
10.3.3.3;4.3.3.3 Blocking probability for Iightpath requests with differentiated QoP requirements;101
10.3.3.4;4.3.3.4 Blocking probability for different values of H;102
10.4;4.4 Conclusion;102
11;Chapter 5 SURVIVABLE TRAFFIC GROOMINGDEDICATED PROTECTION;105
11.1;5.1 Introduction;105
11.1.1;5.1.1 Traffic Grooming;106
11.1.2;5.1.2 Lightpath Protection;106
11.1.3;5.1.3 Survivable Traffic Grooming;107
11.1.4;5.1.4 Our Proposal;107
11.2;5.2 Grooming-Node Architecture;108
11.3;5.3 Problem Statement;109
11.4;5.4 Proposed Approaches;109
11.4.1;5.4.1 Protection-at-Lightpath (PAL) Level;110
11.4.1.1;5.4.1.1 Basic idea;110
11.4.1.2;5.4.1.2 Example;110
11.4.2;5.4.2 Protection-at-Connection (PAC) Level;111
11.4.2.1;5.4.2:1 Basic idea;111
11.4.2.2;5.4.2.2 Example;112
11.4.3;5.4.3 PAL vs. PAC: A Qualitative Comparison;112
11.4.3.1;5.4.3.1 Routing;112
11.4.3.2;5.4.3.2 Solution space;113
11.4.3.3;5.4.3.3 Operational complexity;114
11.5;5.5 PAL Heuristic;114
11.5.1;5.5.1 Problem Complexity;114
11.5.2;5.5.2 PAL Heuristic;115
11.5.3;5.5.3 Explanation;115
11.5.4;5.5.4 Optimality;117
11.5.5;5.5.5 Variations;117
11.5.6;5.5.6 Computational Complexity;117
11.6;5.6 PAC Heuristic;117
11.6.1;5.6.1 Grooming-Node Modeling and Network-State Representation;118
11.6.2;5.6.2 Route Computation;119
11.6.3;5.6.3 Lightpath-Setup Strategy;120
11.6.4;5.6.4 Computational Complexity;122
11.7;5.7 Illustrative Numerical Results;122
11.7.1;5.7.1 Bandwidth-Blocking Ratio (BBR);124
11.7.1.1;5.7.1.1 PAL vs. PAC;124
11.7.1.2;5.7.1.2 Impact of grooming capacity on PAL;124
11.7.1.3;5.7.1.3 Impact of grooming capacity on PAC;124
11.7.2;5.7.2 Resource Utilization;124
11.7.2.1;5.7.2.1 Grooming-port utilization;125
11.7.2.2;5.7.2.2 Wavelength utilization;126
11.7.2.3;5.7.2.3 Lightpath utilization;127
11.7.3;5.7.3 Resource-Efficiency Ratio (RER);127
11.7.3.1;5.7.3.1 Definition;127
11.7.3.2;5.7.3.2 Wavelength efficiency;128
11.7.3.3;5.7.3.3 Grooming-port efficiency;128
11.7.3.4;5.7.3.4 Tradeoff between wavelengths and grooming ports;128
11.7.4;5.7.4 Effect of Different Parameters;130
11.7.4.1;5.7.4.1 Cost-slack parameter d in PAL;130
11.7.4.2;5.7.4.2 Threshold t in PAC;131
11.8;5.8 Conclusion;132
11.9;APPENDIX 5.A: NP-Completeness of WDM-PAC;132
12;Chapter 6 SURVIVABLE TRAFFIC GROOMINGSHARED PROTECTION;134
12.1;6.1 Problem Statement;134
12.2;6.2 Proposed Schemes;135
12.2.1;6.2.1 Protection-at-Lightpath (PAL) Level;135
12.2.1.1;6.2.1.1 Basic idea;135
12.2.1.2;6.2.1.2 Example;136
12.2.2;6.2.2 Mixed Protection-at-Connection (MPAC) Level;138
12.2.2.1;6.2.2.1 Basic idea;138
12.2.2.2;6.2.2.2 Example;138
12.2.3;6.2.3 Separate Protection-at-Connection (SPAC) Level;139
12.2.3.1;6.2.3.1 Basic idea;139
12.2.3.2;6.2.3.2 Example;139
12.2.4;6.2.4 A Qualitative Comparison;140
12.2.4.1;6.2.4.1 Routing;140
12.2.4.2;6.2.4.2 Backup sharing;141
12.2.4.3;6.2.4.3 Operational complexity;143
12.3;6.3 Heuristic Algorithms;143
12.3.1;6.3.1 MPAC Heuristic;143
12.3.1.1;6.3.1.1 Backup-sharing measurement;144
12.3.1.2;6.3.1.2 Grooming-node modeling and network-state representation;144
12.3.1.3;6.3.1.3 Route computation;145
12.3.1.4;6.3.1.4 Modified algorithm for computing K distinct loopless paths;146
12.3.1.5;6.3.1.5 Computational complexity;149
12.3.2;6.3.2 SPAC Heuristic;149
12.3.2.1;6.3.2.1 Backup-sharing measurement;149
12.3.2.2;6.3.2.2 Route computation;149
12.3.3;6.3.3 PAL Heuristic;150
12.3.3.1;6.3.3.1 Backup-sharing measurement;150
12.3.3.2;6.3.3.2 Network-state representation;150
12.3.3.3;6.3.3.3 Route computation;151
12.3.3.4;6.3.3.4 Computational complexity;152
12.4;6.4 Illustrative Numerical Results;154
12.4.1;6.4.1 Bandwidth-Blocking Ratio;154
12.4.2;6.4.2 Resource Utilization;156
12.4.2.1;6.4.2.1 Grooming-port utilization;156
12.4.2.2;6.4.2.2 Wavelength utilization;157
12.4.3;6.4.3 Resource-Efficiency Ratio;158
12.4.3.1;6.4.3.1 Definition;158
12.4.3.2;6.4.3.2 Wavelength efficiency;158
12.4.3.3;6.4.3.3 Grooming-port efficiency;159
12.4.3.4;6.4.3.4 Tradeoff between wavelengths and grooming ports;159
12.4.4;6.4.4 Effects of Different Parameters;160
12.5;6.5 Conclusion;161
13;Chapter 7 SURVIVABLE VIRTUAL CONCATENATION FOR DATA OVER SONET/SDH;163
13.1;7.1 Introduction;163
13.1.1;7.1.1 Next-Generation SONET/SDH Technologies;163
13.1.2;7.1.2 Motivation for Survivable DoS;165
13.1.3;7.1.3 Our Contribution;166
13.1.4;7.1.4 Organization;166
13.2;7.2 Protecting Individual VCG Member (PIVM);167
13.2.1;7.2.1 Basic Idea;167
13.2.2;7.2.2 An Example;167
13.2.3;7.2.3 Route Computation: General Case;168
13.2.3.1;7.2.3.1 Notations;168
13.2.3.2;7.2.3.2 Problem Statement;169
13.2.3.3;7.2.3.3 The PIVM Heuristic;169
13.3;7.3 Provisioning fast REstorable VCG (PREV);171
13.3.1;7.3.1 Basic Idea;171
13.3.2;7.3.2 An Example;171
13.3.3;7.3.3 Pre-Select a Backup Path for Every Node Pair;172
13.3.4;7.3.4 Route Computation;174
13.3.4.1;7.3.4.1 Problem Formulation;174
13.3.4.2;7.3.4.2 The PREY Algorithm;175
13.4;7.4 Route Computation with Extensions to Control the Number of VCG Members;178
13.5;7.5 Performance: PIVM vs. PREV;179
13.5.1;7.5.1 Bandwidth-Blocking Ratio;179
13.5.2;7.5.2 Resource Overbuild;180
13.5.3;7.5.3 Fault-Recovery Time;181
13.5.3.1;7.5.3.1 PIVM;181
13.5.3.2;7.5.3.2 PREY;182
13.5.4;7.5.4 Impact of VCG Size;183
13.6;7.6 Conclusion;184
13.7;APPENDIX 7.A: NP-Completeness of the CMCMP Problem;185
14;References;189
15;Index;198



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.