Buch, Englisch, 354 Seiten, Previously published in hardcover, Format (B × H): 155 mm x 235 mm, Gewicht: 563 g
Buch, Englisch, 354 Seiten, Previously published in hardcover, Format (B × H): 155 mm x 235 mm, Gewicht: 563 g
Reihe: Mathematics and Its Applications
ISBN: 978-90-481-4470-9
Verlag: Springer Netherlands
The intention of this book is to explain to a mathematician having no previous knowledge in this domain, what "noncommutative probability" is. So the first decision was not to concentrate on a special topic. For different people, the starting points of such a domain may be different. In what concerns this question, different variants are not discussed. One such variant comes from Quantum Physics. The motivations in this book are mainly mathematical; more precisely, they correspond to the desire of developing a probability theory in a new set-up and obtaining results analogous to the classical ones for the newly defined mathematical objects. Also different mathematical foundations of this domain were proposed. This book concentrates on one variant, which may be described as "von Neumann algebras". This is true also for the last chapter, if one looks at its ultimate aim. In the references there are some papers corresponding to other variants; we mention Gudder, S.P. &al (1978). Segal, I.E. (1965) also discusses "basic ideas".
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik Mathematik Stochastik Mathematische Statistik
- Mathematik | Informatik Mathematik Mathematische Analysis Harmonische Analysis, Fourier-Mathematik
- Naturwissenschaften Physik Physik Allgemein Theoretische Physik, Mathematische Physik, Computerphysik
- Mathematik | Informatik Mathematik Mathematische Analysis Funktionalanalysis
- Mathematik | Informatik Mathematik Stochastik Wahrscheinlichkeitsrechnung
Weitere Infos & Material
1. Central limit theorem on L(H).- 2. Probability theory on von Neumann algebras.- 3. Free independence.- 4. The Clifford algebra.- 5. Stochastic integrals.- 6. Conditional mean values.- 7. Jordan algebras.- References.