O'Neill / Brabazon | Natural Computing in Computational Finance | Buch | 978-3-642-10112-0 | sack.de

Buch, Englisch, 250 Seiten, Previously published in hardcover, Format (B × H): 155 mm x 235 mm, Gewicht: 400 g

Reihe: Studies in Computational Intelligence

O'Neill / Brabazon

Natural Computing in Computational Finance

Volume 2
Softcover Nachdruck of hardcover 1. Auflage 2009
ISBN: 978-3-642-10112-0
Verlag: Springer

Volume 2

Buch, Englisch, 250 Seiten, Previously published in hardcover, Format (B × H): 155 mm x 235 mm, Gewicht: 400 g

Reihe: Studies in Computational Intelligence

ISBN: 978-3-642-10112-0
Verlag: Springer


Recent years have seen the widespread application of Natural Computing algorithms (broadly defined in this context as computer algorithms whose design draws inspiration from phenomena in the natural world) for the purposes of financial modelling and optimisation. A related stream of work has also seen the application of learning mechanisms drawn from Natural Computing algorithms for the purposes of agent-based modelling in finance and economics. In this book we have collected a series of chapters which illustrate these two faces of Natural Computing. The first part of the book illustrates how algorithms inspired by the natural world can be used as problem solvers to uncover and optimise financial models. The second part of the book examines a number agent-based simulations of financial systems.

This book follows on from (Volume 100 in Springer’s Studies in Computational Intelligence series) which in turn arose from the success of EvoFIN 2007, the very first European Workshop on Evolutionary Computation in Finance & Economics held in Valencia, Spain in April 2007.

O'Neill / Brabazon Natural Computing in Computational Finance jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


Natural Computing in Computational Finance (Volume 2): Introduction.- Natural Computing in Computational Finance (Volume 2): Introduction.- I Financial Modelling.- Statistical Arbitrage with Genetic Programming.- Finding Relevant Variables in a Financial Distress Prediction Problem Using Genetic Programming and Self-organizing Maps.- Ant Colony Optimization for Option Pricing.- A Neuro-Evolutionary Approach for Interest Rate Modelling.- Who’s Smart and Who’s Lucky? Inferring Trading Strategy, Learning and Adaptation in Financial Markets through Data Mining.- II Agent-Based Modelling.- Financial Bubbles: A Learning Effect Modelling Approach.- Evolutionary Computation and Artificial Financial Markets.- Classical and Agent-Based Evolutionary Algorithms for Investment Strategies Generation.- Income Distribution and Lottery Expenditures in Taiwan: An Analysis Based on Agent-Based Simulation.- The Emergence of a Market: What Efforts Can Entrepreneurs Make?.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.