O'Meara | Introduction to Quadratic Forms | Buch | 978-3-540-66564-9 | sack.de

Buch, Englisch, 344 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 1120 g

Reihe: Classics in Mathematics

O'Meara

Introduction to Quadratic Forms


Nachdruck of the 1. Auflage Berlin Heidelberg New York 1963. Corr. 3rd printing 1973
ISBN: 978-3-540-66564-9
Verlag: Springer Berlin Heidelberg

Buch, Englisch, 344 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 1120 g

Reihe: Classics in Mathematics

ISBN: 978-3-540-66564-9
Verlag: Springer Berlin Heidelberg


From the reviews: "O'Meara treats his subject from this point of view (of the interaction with algebraic groups). He does not attempt an encyclopedic coverage ...nor does he strive to take the reader to the frontiers of knowledge... . Instead he has given a clear account from first principles and his book is a useful introduction to the modern viewpoint and literature. In fact it presupposes only undergraduate algebra (up to Galois theory inclusive)... The book is lucidly written and can be warmly recommended.
J.W.S. Cassels, The Mathematical Gazette, 1965
"Anyone who has heard O'Meara lecture will recognize in every page of this book the crispness and lucidity of the author's style;... The organization and selection of material is superb... deserves high praise as an excellent example of that too-rare type of mathematical exposition combining conciseness with clarity...
R. Jacobowitz, Bulletin of the AMS, 1965
O'Meara Introduction to Quadratic Forms jetzt bestellen!

Zielgruppe


Research


Autoren/Hrsg.


Weitere Infos & Material


One Arithmetic Theory of Fields.- I. Valuated Fields.- II. Dedekind Theory of Ideals.- III. Fields of Number Theory.- Two Abstract Theory of Quadratic Forms.- IV. Quadratic Forms and the Orthogonal Group.- V. The Algebras of Quadratic Forms.- Three Arithmetic Theory of Quadratic Forms over Fields.- VI. The Equivalence of Quadratic Forms.- VII. Hilbert’s Reciprocity Law.- Four Arithmetic Theory of Quadratic Forms over Rings.- VIII. Quadratic Forms over Dedekind Domains.- IX. Integral Theory of Quadratic Forms over Local Fields.- X. Integral Theory of Quadratic Forms over Global Fields.


Timothy O'Meara was born on January 29, 1928. He was educated at the University of Cape Town and completed his doctoral work under Emil Artin at Princeton University in 1953. He has served on the faculties of the University of Otago, Princeton University and the University of Notre Dame. From 1978 to 1996 he was provost of the University of Notre Dame. In 1991 he was elected Fellow of the American Academy of Arts and Sciences.

O'Mearas first research interests concerned the arithmetic theory of quadratic forms. Some of his earlier work - on the integral classification of quadratic forms over local fields - was incorporated into a chapter of this, his first book.

Later research focused on the general problem of determining the isomorphisms between classical groups. In 1968 he developed a new foundation for the isomorphism theory which in the course of the next decade was used by him and others to capture all the isomorphisms among large new families of classical groups. In particular, this program advanced the isomorphism question from the classical groups over fields to the classical groups and their congruence subgroups over integral domains.

In 1975 and 1980 O'Meara returned to the arithmetic theory of quadratic forms, specifically to questions on the existence of decomposable and indecomposable quadratic forms over arithmetic domains.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.