Ohsawa / Minami | Bousfield Classes and Ohkawa's Theorem | E-Book | sack.de
E-Book

E-Book, Englisch, Band 309, 435 Seiten, eBook

Reihe: Springer Proceedings in Mathematics & Statistics

Ohsawa / Minami Bousfield Classes and Ohkawa's Theorem

Nagoya, Japan, August 28-30, 2015

E-Book, Englisch, Band 309, 435 Seiten, eBook

Reihe: Springer Proceedings in Mathematics & Statistics

ISBN: 978-981-15-1588-0
Verlag: Springer Singapore
Format: PDF
Kopierschutz: 1 - PDF Watermark



This volume originated in the workshop held at Nagoya University, August 28–30, 2015, focusing on the surprising and mysterious Ohkawa's theorem: the Bousfield classes in the stable homotopy category
SH
form a set. An inspiring, extensive mathematical story can be narrated starting with Ohkawa's theorem, evolving naturally with a chain of motivational questions:

 Ohkawa's theorem states that the Bousfield classes of the stable homotopy category
SH
surprisingly forms a set, which is still very mysterious. Are there any toy models where analogous Bousfield classes form a set with a clear meaning?

The fundamental theorem of Hopkins, Neeman, Thomason, and others states that the analogue of the Bousfield classes in the derived category of quasi-coherent sheaves
Dqc
(
X
) form a set with a clear algebro-geometric description. However, Hopkins was actually motivated not by Ohkawa's theorem but by his own theorem with Smithin the triangulated subcategory

SH
c
, consisting of compact objects in
SH
. Now the following questions naturally occur: (1) Having theorems of Ohkawa and Hopkins-Smith in
SH
, are there analogues for the Morel-Voevodsky A
1
-stable homotopy category
SH
(
k
), which subsumes
SH
when
k
 is a subfield of
C
?, (2) Was it not natural for Hopkins to have considered
Dqc
(
X
)
c
instead of
Dqc
(
X
)? However, whereas there is a conceptually simple algebro-geometrical interpretation
Dqc
(
X
)
c
=
Dperf
(
X
), it is its close relative
Dbcoh
(
X
) that traditionally, ever since Oka and Cartan, has been intensively studied because of its rich geometric and physical information.

This book contains developments for the rest of the storyand much more, including the chromatics homotopy theory, which the Hopkins–Smith theorem is based upon, and applications of Lurie's higher algebra, all by distinguished contributors.
Ohsawa / Minami Bousfield Classes and Ohkawa's Theorem jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


A.K. Bousfield
, Foreword.-
Takao Matumoto
, Memories on Ohkawa’s mathematical life in Hiroshima.-
Carles Casacuberta
, Depth and simplicity of Ohkawa’s argument.-
Shane Kelly
, Some observations about motivic tensor triangulated geometry over a finite field.-
Ruth Joachimi
, Thick ideals in equivariant and motivic stable homotopy categories.-
Takeo Ohsawa
, Role of the L

Method in the study of analytic Families.-
Carles Casacuberta and Jiri Rosicky
, Combinatorial homotopy categories.-
Mark Behrens and Charles Rezk
, Spectral algebra models of unstable
 
v
n
-periodic homotopy theory.-
Takeshi Torii
, On quasi-categories of comodules and Landweber exactness.-
Takuo Matsuoka
, Koszul duality for 

E
n
-algebras in a filtered category.-
Takuo Matsuoka
, Some technical aspects of factorization algebras on manifolds.-
Ryo Kato, Hiroki Okajima and Katsumi Shimomura
, Notes on an alegebraic stable homotopy category.-
Jack Morava
, Operations on integral lifts of
K(n)
.-
Tobias Barthel
, A short introduction to the telescope and chromatic splitting conjectures.-
Norihiko Minami
, From Ohkawa to strong generation via approximable triangulated categories - a variation on the theme of Amnon Neeman's Nagoya lecture series.


Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.