Oertel | Upper Bounds for Grothendieck Constants, Quantum Correlation Matrices and CCP Functions | Buch | 978-3-031-57200-5 | sack.de

Buch, Englisch, Band 2349, 230 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 382 g

Reihe: Lecture Notes in Mathematics

Oertel

Upper Bounds for Grothendieck Constants, Quantum Correlation Matrices and CCP Functions


2024
ISBN: 978-3-031-57200-5
Verlag: Springer Nature Switzerland

Buch, Englisch, Band 2349, 230 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 382 g

Reihe: Lecture Notes in Mathematics

ISBN: 978-3-031-57200-5
Verlag: Springer Nature Switzerland


This book concentrates on the famous Grothendieck inequality and the continued search for the still unknown best possible value of the real and complex Grothendieck constant (an open problem since 1953). It describes in detail the state of the art in research on this fundamental inequality, including Krivine's recent contributions, and sheds light on related questions in mathematics, physics and computer science, particularly with respect to the foundations of quantum theory and quantum information theory. Unifying the real and complex cases as much as possible, the monograph introduces the reader to a rich collection of results in functional analysis and probability. In particular, it includes a detailed, self-contained analysis of the multivariate distribution of complex Gaussian random vectors. The notion of Completely Correlation Preserving (CCP) functions plays a particularly important role in the exposition.

The prerequisites are a basic knowledge of standard functional analysis, complex analysis, probability, optimisation and some number theory and combinatorics. However, readers missing some background will be able to consult the generous bibliography, which contains numerous references to useful textbooks.

The book will be of interest to PhD students and researchers in functional analysis, complex analysis, probability, optimisation, number theory and combinatorics, in physics (particularly in relation to the foundations of quantum mechanics) and in computer science (quantum information and complexity theory).

Oertel Upper Bounds for Grothendieck Constants, Quantum Correlation Matrices and CCP Functions jetzt bestellen!

Zielgruppe


Research


Autoren/Hrsg.


Weitere Infos & Material


- Introduction and motivation.- Complex Gaussian random vectors and their probability law.- A quantum correlation matrix version of the Grothendieck inequality.- Powers of inner products of random vectors, uniformly distributed on the sphere.- Completely correlation preserving functions.- The real case: towards extending Krivine's approach.- The complex case: towards extending Haagerup's approach.- A summary scheme of the main result.- Concluding remarks and open problems.- References.- Index.


Frank Oertel is an Honorary Research Associate at the LSE Centre for Philosophy of Natural and Social Science (CPNSS) in London. After studying mathematics and physics at the University of Kaiserslautern-Landau (RPTU), he was a researcher at the University of Zurich, ETH Zurich and Heriot-Watt University, Edinburgh and a lecturer at University College Cork (UCC), Ireland and the University of Southampton, UK. His research interests are primarily in functional analysis, including its applications to quantum mechanics, and applications of functional and stochastic analysis to problems in financial mathematics. He has also worked as a mathematical advisor in the financial industry, including banking supervision and audit (Frankfurt, Zurich, Bonn, Munich and London).



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.