Odell / Rosenthal | Functional Analysis | E-Book | sack.de
E-Book

E-Book, Englisch, Band 1470, 208 Seiten, eBook

Reihe: Lecture Notes in Mathematics

Odell / Rosenthal Functional Analysis

Proceedings of the Seminar at the University of Texas at Austin 1987 - 89
Erscheinungsjahr 2006
ISBN: 978-3-540-47493-7
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark

Proceedings of the Seminar at the University of Texas at Austin 1987 - 89

E-Book, Englisch, Band 1470, 208 Seiten, eBook

Reihe: Lecture Notes in Mathematics

ISBN: 978-3-540-47493-7
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark



The papers in this volume yield a variety of powerful tools for penetrating the structure of Banach spaces, including the following topics: the structure of Baire-class one functions with Banach space applications, operator extension problems, the structure of Banach lattices tensor products of operators and Banach spaces, Banach spaces of certain classes of Fourier series, uniformly stable Banach spaces, the hyperplane conjecture for convex bodies, and applications of probability theory to local Banach space structure. With contributions by: R. Haydon, E. Odell, H. Rosenthal : On certain classes of Baire-1 functions with applications to Banach space theory.- K. Ball : Normed spaces with a weak-Gordon-Lewis property.- S.J. Szarek : On the geometry of the Banach-Mazur compactum.- P. Wojtaszczyk : Some remarks about the space of measures with uniformly bounded partial sums and Banach-Mazur distances between some spaces of polynomials.- N. Ghoussoub , W.B. Johnson : Operators which factor through Banach lattices not containing co.- W.B. Johnson, G. Schechtman : Remarks on Talagrand's deviation inequality for Rademacher functions.- M. Zippin : A Global Approach to Certain Operator Extension Problems.- H. Knaust, E. Odell : Weakly null sequences with upper lp-estimates.- H. Rosenthal , S.J. Szarek : On tensor products of operators from Lp to Lq.- T. Schlumprecht : Limited Sets in Injective Tensor Products.- F. Räbiger : Lower and upper 2-estimates for order bounded sequences and Dunford-Pettis operators between certain classes of Banach lattices.- D.H. Leung : Embedding l1 into Tensor Products of Banach Spaces.- P. Hitczenko : A remark on the paper "Martingale inequalities in rearrangement invariant function spaces" by W.B. Johnson, G. Schechtman .- F. Chaatit : Twisted types and uniform stability.
Odell / Rosenthal Functional Analysis jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


On certain classes of Baire-1 functions with applications to Banach space theory.- Normed spaces with a weak-Gordon-Lewis property.- On the geometry of the Banach-Mazur compactum.- Some remarks about the space of measures with uniformly bounded partial sums and Banach-Mazur distances between some spaces of polynomials.- Operators which factor through Banach lattices not containing c 0.- Remarks on Talagrand’s deviation inequality for Rademacher functions.- A global approach to certain operator extension problems.- Weakly null sequences with upper ?p-estimates.- On tensor products of operators from L p to L q .- Limited sets in injective tensor products.- Lower and upper 2-estimates for order bounded sequences and Dunford-Pettis operators between certain classes of Banach lattices.- Embedding ?1 into tensor products of Banach spaces.- A remark on the paper “Martingale inequalities in rearrangement invariant function spaces” by W.B. Johnson and G. Schechtman.- Twisted types and uniform stability.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.