Oberhettinger | Tables of Fourier Transforms and Fourier Transforms of Distributions | Buch | 978-3-540-50630-0 | sack.de

Buch, Englisch, 259 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 417 g

Oberhettinger

Tables of Fourier Transforms and Fourier Transforms of Distributions


Softcover Nachdruck of the original 1. Auflage 1990
ISBN: 978-3-540-50630-0
Verlag: Springer Berlin Heidelberg

Buch, Englisch, 259 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 417 g

ISBN: 978-3-540-50630-0
Verlag: Springer Berlin Heidelberg


These tables represent a new, revised and enlarged version of the previously published book by this author, entitled "Tabellen zur Fourier Transformation" (Springer Verlag 1957). Known errors have been correc­ ted, apart from the addition of a considerable number of new results, which involve almost exclusively higher functions. Again, the follow­ ing tables contain a collection of integrals of the form J f(x)cos(xy)dx Fourier Cosine Transform (Al o (B) J f(x)sin(xy)dx Fourier Sine Transform o (C) ge(y) = J f(x)eixYdx Exponential Fourier Transform -00 Clearly, (A) and (B) are special cases of (C) if f(x) is respec­ tively an even or an odd function. The transform parameter y in (A) and (B) is assumed to be positive, while in (C) negative values are also included. A possible analytic continuation to complex parameters y* should present no difficulties. In some cases the result function g(y) is given over a partial range of y only. This means that g(y) for the remaining part of y cannot be given in a reasonably simple form. Under certain conditions the following inversion formulas for (A), (B), (C) hold: (A' ) f(x) = 2 J g (y)cos(xy)dy 11 0 c 2 J (B') f (x) gs(y)sin(xy)dy 11 0 -1 00 -ix (C' ) f(x) = (211) J ge(y)e Ydy In the following parts I, II, III tables for the transforms (A), (B) and (C) are given.

Oberhettinger Tables of Fourier Transforms and Fourier Transforms of Distributions jetzt bestellen!

Zielgruppe


Research


Autoren/Hrsg.


Weitere Infos & Material


I. Fourier Cosine Transforms (Tables I).- 1.1 Algebraic Functions.- 1.2 Arbitrary Powers.- 1.3 Exponential Functions.- 1.4 Logarithmic Functions.- 1.5 Trigonometric Functions.- 1.6 Inverse Trigonometric Functions.- 1.7 Hyperbolic Functions.- 1.8 Orthogonal Polynomials.- 1.9 Gamma- and Related Functions.- 1.10 The Error- and the Fresnel Integrals.- 1.11 The Exponential- and Related Integrals.- 1.12 Legendre Functions.- 1.13 Bessel Functions of Arguments x, x2 and 1/x.- 1.14 Bessel Functions of Argument (ax2 + bx + c)1/2.- 1.15 Bessel Functions of Trigonometric and Hyperbolic Arguments.- 1.16 Bessel Functions of Variable Order.- 1.17 Modified Bessel Functions of Arguments x, x2 and 1/x.- 1.18 Modified Bessel Functions of Argument (ax2 + bx + c)1/2.- 1.19 Modified Bessel Functions of Trigonometric and Hyperbolic Arguments.- 1.20 Modified Bessel Functions of Variable Order.- 1.21 Functions Related to Bessel Functions.- 1.22 Parabolic Cylinder- and Whittaker Functions.- 1.23 Elliptic Integrals.- II. Fourier Sine Transforms (Tables II).- 2.1 Algebraic Functions.- 2.2 Arbitrary Powers.- 2.3 Exponential Functions.- 2.4 Logarithmic Functions.- 2.5 Trigonometric Functions.- 2.6 Inverse Trigonometric Functions.- 2.7 Hyperbolic Functions.- 2.8 Orthogonal Polynomials.- 2.9 Gamma- and Related Functions.- 2.10 The Error- and the Fresnel Integrals.- 2.11 The Exponential- and Related Integrals.- 2.12 Legendre Functions.- 2.13 Bessel Functions of Arguments x, x2 and 1/x.- 2.14 Bessel Functions of Argument (ax2 + bx + c)1/2.- 2.15 Bessel Functions of Trigonometric and Hyperbolic Arguments.- 2.16 Bessel Functions of Variable Order.- 2.17 Modified Bessel Functions of Arguments x, x2 and 1/x.- 2.18 Modified Bessel Functions of Argument (ax2 + bx + c)1/2.- 2.19 Modified Bessel Functions of Trigonometric and Hyperbolic Arguments.- 2.20 Modified Bessel Functions of Variable Order.- 2.21 Functions Related to Bessel Functions.- 2.22 Parabolic Cylinder- and Whittaker Functions.- 2.23 Elliptic Integrals.- III. Exponential Fourier Transforms (Tables III).- IV. Fourier Transforms of Distributions (Tables IV and V).- List of Functions.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.