Buch, Englisch, 259 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 417 g
ISBN: 978-3-540-50630-0
Verlag: Springer Berlin Heidelberg
These tables represent a new, revised and enlarged version of the previously published book by this author, entitled "Tabellen zur Fourier Transformation" (Springer Verlag 1957). Known errors have been correc ted, apart from the addition of a considerable number of new results, which involve almost exclusively higher functions. Again, the follow ing tables contain a collection of integrals of the form J f(x)cos(xy)dx Fourier Cosine Transform (Al o (B) J f(x)sin(xy)dx Fourier Sine Transform o (C) ge(y) = J f(x)eixYdx Exponential Fourier Transform -00 Clearly, (A) and (B) are special cases of (C) if f(x) is respec tively an even or an odd function. The transform parameter y in (A) and (B) is assumed to be positive, while in (C) negative values are also included. A possible analytic continuation to complex parameters y* should present no difficulties. In some cases the result function g(y) is given over a partial range of y only. This means that g(y) for the remaining part of y cannot be given in a reasonably simple form. Under certain conditions the following inversion formulas for (A), (B), (C) hold: (A' ) f(x) = 2 J g (y)cos(xy)dy 11 0 c 2 J (B') f (x) gs(y)sin(xy)dy 11 0 -1 00 -ix (C' ) f(x) = (211) J ge(y)e Ydy In the following parts I, II, III tables for the transforms (A), (B) and (C) are given.
Zielgruppe
Research
Autoren/Hrsg.
Weitere Infos & Material
I. Fourier Cosine Transforms (Tables I).- 1.1 Algebraic Functions.- 1.2 Arbitrary Powers.- 1.3 Exponential Functions.- 1.4 Logarithmic Functions.- 1.5 Trigonometric Functions.- 1.6 Inverse Trigonometric Functions.- 1.7 Hyperbolic Functions.- 1.8 Orthogonal Polynomials.- 1.9 Gamma- and Related Functions.- 1.10 The Error- and the Fresnel Integrals.- 1.11 The Exponential- and Related Integrals.- 1.12 Legendre Functions.- 1.13 Bessel Functions of Arguments x, x2 and 1/x.- 1.14 Bessel Functions of Argument (ax2 + bx + c)1/2.- 1.15 Bessel Functions of Trigonometric and Hyperbolic Arguments.- 1.16 Bessel Functions of Variable Order.- 1.17 Modified Bessel Functions of Arguments x, x2 and 1/x.- 1.18 Modified Bessel Functions of Argument (ax2 + bx + c)1/2.- 1.19 Modified Bessel Functions of Trigonometric and Hyperbolic Arguments.- 1.20 Modified Bessel Functions of Variable Order.- 1.21 Functions Related to Bessel Functions.- 1.22 Parabolic Cylinder- and Whittaker Functions.- 1.23 Elliptic Integrals.- II. Fourier Sine Transforms (Tables II).- 2.1 Algebraic Functions.- 2.2 Arbitrary Powers.- 2.3 Exponential Functions.- 2.4 Logarithmic Functions.- 2.5 Trigonometric Functions.- 2.6 Inverse Trigonometric Functions.- 2.7 Hyperbolic Functions.- 2.8 Orthogonal Polynomials.- 2.9 Gamma- and Related Functions.- 2.10 The Error- and the Fresnel Integrals.- 2.11 The Exponential- and Related Integrals.- 2.12 Legendre Functions.- 2.13 Bessel Functions of Arguments x, x2 and 1/x.- 2.14 Bessel Functions of Argument (ax2 + bx + c)1/2.- 2.15 Bessel Functions of Trigonometric and Hyperbolic Arguments.- 2.16 Bessel Functions of Variable Order.- 2.17 Modified Bessel Functions of Arguments x, x2 and 1/x.- 2.18 Modified Bessel Functions of Argument (ax2 + bx + c)1/2.- 2.19 Modified Bessel Functions of Trigonometric and Hyperbolic Arguments.- 2.20 Modified Bessel Functions of Variable Order.- 2.21 Functions Related to Bessel Functions.- 2.22 Parabolic Cylinder- and Whittaker Functions.- 2.23 Elliptic Integrals.- III. Exponential Fourier Transforms (Tables III).- IV. Fourier Transforms of Distributions (Tables IV and V).- List of Functions.