Oñate / Onate / Owen | Computational Plasticity | E-Book | www2.sack.de
E-Book

E-Book, Englisch, Band 7, 265 Seiten

Reihe: Computational Methods in Applied Sciences

Oñate / Onate / Owen Computational Plasticity


1. Auflage 2010
ISBN: 978-1-4020-6577-4
Verlag: Springer Netherlands
Format: PDF
Kopierschutz: 1 - PDF Watermark

E-Book, Englisch, Band 7, 265 Seiten

Reihe: Computational Methods in Applied Sciences

ISBN: 978-1-4020-6577-4
Verlag: Springer Netherlands
Format: PDF
Kopierschutz: 1 - PDF Watermark



This book contains 14 invited contributions written by distinguished authors who participated in the VIII International Conference on Computational Plasticity held at CIMNE/UPC (www.cimne.com) from 5-8 September 2005, in Barcelona, Spain. The chapters present recent progress and future research directions in the field of computational plasticity.

Oñate / Onate / Owen Computational Plasticity jetzt bestellen!

Weitere Infos & Material


1;Table of Contents;6
2;Preface;8
3;Chapter 1;10
3.1;A Multi-Scale Continuum Theory for Heterogeneous Materials;10
3.1.1;1 Multi-Physics Multi-Scale Material Model;10
3.1.1.1;1.1 Kinematics and Virtual Power;10
3.1.1.2;1.2 Constitutive Relation;11
3.1.2;2 Application to Porous metals;11
3.1.2.1;2.1 Multi-Scale Model;12
3.1.2.2;2.2 Constitutive Relation;13
3.1.2.3;2.3 Numerical Results;13
3.1.3;3 Three-scale Model of High-Strength Steels;15
3.1.3.1;3.1 Multi-Scale Model;15
3.1.3.2;3.2 Constitutive Relation;16
3.1.3.3;3.3 Numerical Results;17
3.1.4;4 Conclusion;18
3.1.5;Acknowledgements;19
3.1.6;References;19
4;Chapter 2;21
4.1;Towards a Model for Large Strain Anisotropic Elasto-Plasticity;21
4.1.1;1 Introduction;21
4.1.2;2 Kinematics and Incremental Integrations;23
4.1.2.1;2.1 Kinematics of Deformation: Multiplicative Decomposition and Strain Rate Tensors;23
4.1.2.2;2.2 Integration of the Plastic Deformation Gradient;24
4.1.2.3;2.3 Rotationally-Frozen Configuration;26
4.1.3;3 Free Energy Function and Dissipation Inequality;27
4.1.3.1;3.1 Stored Energy Function: Orthotropic Hyperelasticity Based on Logarithmic Strain Measures;27
4.1.3.2;3.2 Hardening Potential;30
4.1.4;4 Mapping Tensors from Quadratic to Logarithmic Strain Space;32
4.1.5;5 Dissipation Inequality;34
4.1.6;6 Yield Functions;36
4.1.6.1;6.1 Yield Function for the Symmetric Part;37
4.1.6.2;6.2 Yield Function for the Skew Part;37
4.1.6.3;6.3 Coupling of Symmetric and Skew Parts;38
4.1.7;7 Numerical Example;38
4.1.8;8 Conclusions;39
4.1.9;References;42
5;Chapter 3;45
5.1;Localized and Diffuse Bifurcations in Porous Rocks Undergoing Shear Localization and Cataclastic Flow;45
5.1.1;1 Introduction;45
5.1.2;2 Shear Localization;48
5.1.2.1;2.1 E-mode for Shear Localization;48
5.1.2.2;2.2 Constitutive Branching for Shear Localization;50
5.1.3;3 Cataclastic Flow;54
5.1.3.1;3.1 E-mode for Cataclastic Flow;54
5.1.3.2;3.2 Constitutive Branching for Cataclastic Flow;56
5.1.4;4 Transient Plastic Flow;57
5.1.4.1;4.1 Slip Weakening;58
5.1.4.2;4.2 Cataclastic Flow;58
5.1.5;5 Closure;59
5.1.6;Acknowledgements;59
5.1.7;References;59
6;Chapter 4;62
6.1;Dispersion and Localisation in a Strain–Softening Two–Phase Medium;62
6.1.1;1 Introduction;62
6.1.2;2 Governing Equations;63
6.1.3;3 Reduction of the Governing Equations;66
6.1.4;4 Dispersion Analysis;67
6.1.5;5 Numerical Examples;69
6.1.6;6 Concluding Remarks;71
6.1.7;References;72
7;Chapter 5;74
7.1;New Developments in Surface-to-Surface Discretization Strategies for Analysis of Interface Mechanics;74
7.1.1;1 Introduction;74
7.1.2;2 Background: Mortar Projection in Contact Mechanics;75
7.1.2.1;2.1 The Mesh Tying Problem;75
7.1.2.2;2.2 Generalization to Sliding Contact;78
7.1.3;3 An Extension of the Framework: Mortar-Based Self-Contact;81
7.1.4;4 Mortar Formulation of Lubricated Contact;88
7.1.5;5 Conclusion;91
7.1.6;Acknowledgment;92
7.1.7;References;92
8;Chapter 6;94
8.1;Particle Finite Element Methods in Solid Mechanics Problems;94
8.1.1;1 Introduction;94
8.1.2;2 Fundamentals: The Particle Finite Element Method;95
8.1.2.1;2.1 Equations of Motion. Boundary Value Problem;95
8.1.2.2;2.2 Time Marching Scheme;97
8.1.3;3 Contact Strategy: Anticipating Interface Mesh;99
8.1.3.1;3.1 A Penalty Strategy at the Contact Interface;100
8.1.4;4 Representative Examples;103
8.1.4.1;4.1 Flexible Spring with Multiple Self-contacts;103
8.1.4.2;4.2 Riveting Process;105
8.1.4.3;4.3 Machining Process;107
8.1.4.4;4.4 Powder Filling Process;107
8.1.5;5 Concluding Remarks;108
8.1.6;Acknowledgements;109
8.1.7;References;109
9;Chapter 7;111
9.1;Micro-Meso-Macro Modelling of Composite Materials;111
9.1.1;1 Introduction;112
9.1.2;2 Micro-structure of Hardened Cement Paste (hcp);113
9.1.3;3 Constitutive Equations;115
9.1.4;4 Homogenization;118
9.1.5;5 Parameter Identification;120
9.1.6;6 Thermo-mechanical Coupling;122
9.1.7;7 Outlook;126
9.1.8;Acknowledgments;127
9.1.9;References;128
10;Chapter 8;129
10.1;Numerical Modeling of Transient Impact Processes with Large Deformations and Nonlinear Material Behavior;129
10.1.1;1 Introduction;129
10.1.2;2 Class of Problems;130
10.1.3;3 Adaptive Remeshing;130
10.1.3.1;3.1 Mesh Quality Check;130
10.1.3.2;3.2 Error Assessment and Mesh Density Distribution;130
10.1.3.2.1;Gradient-Based Indicators;131
10.1.3.2.2;Local Quantity Indicators;132
10.1.3.2.3;Geometric Indicator;133
10.1.3.2.4;Selection of Indicators and Final Mesh Density Distribution;133
10.1.3.3;3.3 Mesh Generation;134
10.1.3.4;3.4 Transfer of State Variables;135
10.1.4;4 Constitutive Modeling;135
10.1.4.1;4.1 Metals;135
10.1.4.2;4.2 Geomaterials;137
10.1.4.2.1;Characterization of Geomaterials Under Impact Loading;137
10.1.4.2.2;Modified Drucker-Prager-Cap Model;138
10.1.4.2.3;Powderization Under High Pressure;140
10.1.5;5 Numerical Examples;143
10.1.5.1;5.1 Adaptive Computations;143
10.1.5.1.1;Taylor Bar Impact;143
10.1.5.1.2;High-Strain Rate Compression of WHA Block;145
10.1.5.1.3;Penetration of a Steel Cylinder by WHA Long Rod;145
10.1.5.2;5.2 Geomechanical computations;146
10.1.5.2.1;Quasi-Static Tests;146
10.1.5.2.2;Triple Impact on Microconcrete;146
10.1.5.2.3;Dynamic Compaction of Powder;147
10.1.6;6 Conclusion;148
10.1.7;References;149
11;Chapter 9;151
11.1;A Computational Model For Viscoplasticity Coupled with Damage Including Unilateral Effects;151
11.1.1;1 Introduction;151
11.1.2;2 Elasto-Viscoplastic Damage Constitutive Model;153
11.1.2.1;2.1 Viscoplastic Model;153
11.1.2.2;2.2 Concept of Effective Stress;154
11.1.2.3;2.3 Elasto-Viscoplasticity Coupled with Damage;155
11.1.2.4;2.4 Damage Evolution Law;156
11.1.3;3 Integration Algorithm;158
11.1.3.1;3.1 Single-Equation Corrector;160
11.1.3.2;3.2 Consistent Tangent Operator;163
11.1.4;4 Accuracy Analysis of the Integration Algorithm;165
11.1.5;5 Concluding Remarks;169
11.1.6;References;169
12;Chapter 10;171
12.1;On Multiscale Analysis of Heterogeneous Composite Materials: Implementation of Micro-to-Macro Transitions in the Finite Element Setting;171
12.1.1;1 Introduction;171
12.1.2;2 Continuum Model at Small Strains;172
12.1.2.1;2.1 Preliminaries;172
12.1.2.2;2.2 Basic Microvariables;173
12.1.2.3;2.3 Basic Macrovariables and Averaging Theorem;173
12.1.2.3.1;The Hill-Mandel Principle;174
12.1.2.4;2.4 Definition of the Boundary Conditions for the Small Scale;174
12.1.2.4.1;Linear displacements on the boundary;175
12.1.2.4.2;Periodic deformation and antiperiodic traction on the boundary;175
12.1.3;3 Discretised Model at Small Strains;176
12.1.3.1;3.1 Introduction;176
12.1.3.2;3.2 Displacement Field Partition and Matrix Notation;177
12.1.3.3;3.3 Discretised Micro-equilibrium State and Solution Procedure;177
12.1.3.4;3.4 General Average Stress and Overall Tangent Modulus Computation;178
12.1.3.4.1;Average Stress Computation;178
12.1.3.4.2;Overall Tangent Modulus Computation;178
12.1.3.5;3.5 Linear Displacements on the Boundary Assumption;179
12.1.3.5.1;Partitioning of Algebraic Equations;179
12.1.3.5.2;Linear Displacement;180
12.1.3.5.3;Tangent Modulus of Linear Displacements on the Boundary Constraint;180
12.1.3.6;3.6 Periodic Displacements and Antiperiodic Traction on the Boundary;181
12.1.3.6.1;Partitioning of Algebraic Equations;181
12.1.3.6.2;Periodic Displacements and Antiperiodic Tractions;182
12.1.3.6.3;Tangent Modulus of Periodic Displacements and Antiperiodic Traction on the Boundary Constraints;182
12.1.4;4 Numerical Examples;183
12.1.4.1;4.1 Study of the Effect of Topology of Cavities on the Properties of the RVE;183
12.1.4.1.1;Problem Specifications;183
12.1.4.1.2;Analysis Approach;184
12.1.4.1.3;Study of the Regular Cavity Model;184
12.1.4.1.4;The RVE with Randomly Generated Voids;185
12.1.4.2;4.2 Two-scale Analysis of Stretching of an Elasto-plastic Perforated Plate;186
12.1.4.2.1;Single-scale Analysis;188
12.1.4.2.2;Two-scale Analysis;188
12.1.5;5 Conclusions;189
12.1.6;References;190
13;Chapter 11;192
13.1;Assessment of Protection Systems for Gravel-Buried Pipelines Considering Impact and Recurrent Shear Loading Caused by Thermal Deformations of the Pipe;192
13.1.1;Introduction;192
13.1.2;1 Protection Systems for Gravel-Buried Pipelines Subjected to Rockfall;192
13.1.2.1;1.1 Development of a Structural Model;193
13.1.2.1.1;Geometric Dimensions of the Considered Problem;193
13.1.2.1.2;Impact Scenario and Mode of Analysis;193
13.1.2.1.3;Estimates of the Maximum Impact Force and the Penetration Depth at Maximum Impact Force;194
13.1.2.1.4;Computation of the Distribution of Stresses Corresponding to the Maximum Impact Force;195
13.1.2.1.5;Material Modeling of Steel, Gravel and Sand;195
13.1.2.1.6;Parameter Identification;197
13.1.2.2;1.2 Validation of the Developed Structural Model;197
13.1.2.2.1;Real-scale Impact Experiment;197
13.1.2.2.2;Comparison between Model-predicted and Experimentally Determined Stress Distribution in the Steel Pipe;198
13.1.2.3;1.3 Prognoses of Structural Behavior;199
13.1.2.3.1;Prognoses Considering a Change of the Boundary Conditions;199
13.1.2.3.2;Prognoses Considering a Change of the Structural Dimensions;200
13.1.2.3.3;Prognoses Considering a Change of the Boundary Conditions and of the Structural Dimensions;200
13.1.2.4;1.4 Assessment of an Enhanced Protection System Consisting of Gravel and, Additionally, of Buried Load-Carrying Structural Elements;200
13.1.2.4.1;Buried Steel Plate Resting on Concrete Walls;201
13.1.2.4.2;Assessment of the Enhanced Protection System;202
13.1.2.5;1.5 Conclusions;202
13.1.3;2 Protection Systems Against Abrasive Shear Loading Caused by Thermal Deformation of Soil-Covered Pipelines;203
13.1.3.1;2.1 Assessment of Static Forces Exerted by Single Stone Tips onto Soil-Covered Pipelines;203
13.1.3.1.1;Loading Scenario;203
13.1.3.1.2;Structural Model;203
13.1.3.1.3;Finite Element Simulation;205
13.1.3.1.4;Relevant Forces of Tips of Single Stone Acting on Soil-covered Pipelines, as a Function of the Pipe Diameter;205
13.1.3.2;2.2 Identification of Wear Protection Strategies;205
13.1.3.2.1;Archard’s Wear Law;205
13.1.3.2.2;Protection Performance of Geosynthetics;208
13.1.3.2.3;Effective Means of Protection;209
13.1.3.3;2.3 Conclusions;209
13.1.4;References;210
14;Chapter 12;212
14.1;Enriched Free Mesh Method: An Accuracy Improvement for Node-based FEM;212
14.1.1;1 Introduction;212
14.1.2;2 Basic Concept of Free Mesh Method (FMM);213
14.1.3;3 Enriched Free Mesh Method (EFMM);215
14.1.3.1;3.1 Outline of EFMM;215
14.1.3.2;3.2 EFMM Based on the Localized Least Square Method;215
14.1.3.3;3.3 EFMM Based on Hellinger-Reissner Principle;217
14.1.4;4 Examples;218
14.1.4.1;4.1 Convergence Study: Displacement;218
14.1.4.2;4.2 Convergence Study: Error Norms;219
14.1.4.3;4.3 Patch Test;221
14.1.5;5 Concluding remarks;223
14.1.6;References;223
15;Chapter 13;225
15.1;Modelling of Metal Forming Processes and Multi-Physic Coupling;225
15.1.1;1 Introduction;225
15.1.2;2 Mechanical Approach of Metal Forming Processes;226
15.1.2.1;2.1 Constitutive Modeling;226
15.1.2.2;2.2 Finite Element Approximation;227
15.1.2.3;2.3 Numerical Issues;228
15.1.3;3 Thermal and Fluid-Solid Coupling;228
15.1.3.1;3.1 Classical Thermal and Mechanical Coupling;228
15.1.3.2;3.2 Localization;230
15.1.3.3;3.3 Fluid Solid Coupling During Heating or Heat Treatment;230
15.1.4;4 Electro Magnetic Coupling;230
15.1.4.1;4.1 The Induction Heating Process;230
15.1.4.2;4.2 The Direct Electro-Thermal Formulation;231
15.1.4.3;4.3 Finite Element Numerical Approximation;233
15.1.4.4;4.4 The Electromagnetic/Thermal Coupling Procedure;234
15.1.4.5;4.5 Results;235
15.1.5;5 Coupling with Microstructure Evolution;238
15.1.5.1;5.1 Introduction;238
15.1.5.2;5.2 Macroscopic Approach;239
15.1.5.3;5.3 Multi-Scale Coupling and the Digital Material;239
15.1.6;6 Conclusions;241
15.1.7;References;242
16;Chapter 14;243
16.1;Enhanced Rotation-Free Basic Shell Triangle. Applications to Sheet Metal Forming;243
16.1.1;1 Introduction;243
16.1.2;2 Basic Thin Shell Equations Using a Total Lagrangian Formulation;245
16.1.2.1;2.1 Shell Kinematics;245
16.1.2.2;2.2 Constitutive Models;247
16.1.3;3 Enhanced Basic Shell Triangle;249
16.1.3.1;3.1 Definition of the Element Geometry and Computation of Membrane Strains;249
16.1.3.2;3.2 Computation of Curvatures;251
16.1.3.3;3.3 The EBST1 Element;253
16.1.4;4 Boundary Conditions;254
16.1.5;5 Explicit Solution Scheme;255
16.1.6;6 Example 1. Cylindrical Panel under Impulse Loading;256
16.1.7;7 Application to Sheet Metal Forming Problems;259
16.1.7.1;7.1 S-rail Sheet Stamping;259
16.1.7.2;7.2 Stamping of Industrial Automotive Part;261
16.1.8;8 Concluding Remarks;262
16.1.9;Acknowledgements;266
16.1.10;References;267



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.