E-Book, Englisch, 288 Seiten, Web PDF
Noton Modern Control Engineering
1. Auflage 2014
ISBN: 978-1-4831-8693-1
Verlag: Elsevier Science & Techn.
Format: PDF
Kopierschutz: 1 - PDF Watermark
Pergamon Unified Engineering Series
E-Book, Englisch, 288 Seiten, Web PDF
ISBN: 978-1-4831-8693-1
Verlag: Elsevier Science & Techn.
Format: PDF
Kopierschutz: 1 - PDF Watermark
Modern Control Engineering focuses on the methodologies, principles, approaches, and technologies employed in modern control engineering, including dynamic programming, boundary iterations, and linear state equations. The publication fist ponders on state representation of dynamical systems and finite dimensional optimization. Discussions focus on optimal control of dynamical discrete-time systems, parameterization of dynamical control problems, conjugate direction methods, convexity and sufficiency, linear state equations, transition matrix, and stability of discrete-time linear systems. The text then tackles infinite dimensional optimization, including computations with inequality constraints, gradient method in function space, quasilinearization, computation of optimal control-direct and indirect methods, and boundary iterations. The book takes a look at dynamic programming and introductory stochastic estimation and control. Topics include deterministic multivariable observers, stochastic feedback control, stochastic linear-quadratic control problem, general calculation of optimal control by dynamic programming, and results for linear multivariable digital control systems. The publication is a dependable reference material for engineers and researchers wanting to explore modern control engineering.
Autoren/Hrsg.
Weitere Infos & Material
1;Front Cover;1
2;Modem Control Engineering;4
3;Copyright Page;5
4;Table of Contents;6
5;Preface;10
6;Chapter 1. State Representation of Dynamical Systems;12
6.1;1.1 STATE EQUATIONS;12
6.2;1.2 LINEAR STATE EQUATIONS;14
6.3;1.3 FUNDAMENTAL MATRICES;16
6.4;1.4 THE TRANSITION MATRIX;17
6.5;1.5 INCLUSION OF THE FORCING OR CONTROL VARIABLES;19
6.6;1.6 EIGENVALUES AND EIGENVECTORS;20
6.7;1-7 DISCRETE-TIME STATE EQUATIONS;24
6.8;1.8 STABILITY OF DISCRETE-TIME LINEAR SYSTEMS;26
6.9;1.9 CONTROLLABILITY;27
6.10;1.10 OBSERVABILITY;30
6.11;PROBLEMS;32
7;Chapter 2. Finite Dimensional Optimization;35
7.1;2.1 MOTIVATION;35
7.2;2.2 UNCONSTRAINED MAXIMA AND MINIMA;37
7.3;2.3 EQUALITY CONSTRAINTS;39
7.4;2.4 INEQUALITY CONSTRAINTS;41
7.5;2.5 CONVEXITY AND SUFFICIENCY;44
7.6;2.6 LINEAR PROGRAMMING;45
7.7;2.7 DIRECT METHODS OF MINIMIZATION;49
7.8;2.8 AN ILLUSTRATIVE MINIMIZATION EXAMPLE;50
7.9;2.9 MINIMIZATION BY STEEPEST DESCENT;52
7.10;2.10 SECOND ORDER GRADIENTS;58
7.11;2.11 CONJUGATE DIRECTION METHODS;60
7.12;2.12 ONE DIMENSIONAL SEARCHES;63
7.13;2.13 DAVIDON-FLETCHER-POWELL;64
7.14;2.14 FLETCHER-REEVES;69
7.15;2.15 POWELL'S METHOD;71
7.16;2.16 DIRECT METHODS FOR CONSTRAINED MINIMIZATION;77
7.17;2.17 PENALTY FUNCTIONS;79
7.18;2.18 USE OF TRANSFORMATIONS;80
7.19;2.19 PARAMETERIZATION OF DYNAMICAL CONTROLPROBLEMS;81
7.20;2.20 OPTIMAL CONTROL OF DYNAMICAL DISCRETE-TIME SYSTEMS;85
7.21;PROBLEMS;90
8;Chapter 3. Infinite Dimensional Optimization;93
8.1;3.1 A CLASSIC PROBLEM AND A CLASSICAL SOLUTION;93
8.2;3.2 DYNAMICAL OPTIMIZATION WITH NO TERMINAL CONSTRAINTS;97
8.3;3.3 A SIMPLE CONTROL PROBLEM;99
8.4;3.4 TERMINAL CONSTRAINTS AND VARIABLETERMINAL TIME;103
8.5;3.5 AN ELEMENTARY THRUST-PROGRAMMING PROBLEM;105
8.6;3.6 A FORETASTE OF COMPUTATIONAL DIFFICULTIES;109
8.7;3.7 THE LINEAR-QUADRATIC CONTROL PROBLEM;112
8.8;3.8 DESIGN OF A LATERAL AUTOSTABILIZERFOR AN AIRCRAFT;116
8.9;3.9 STABILITY OF THE LINEAR-QUADRATIC REGULATOR;120
8.10;3.10 INEQUALITY CONSTRAINTS;120
8.11;3.11 PONTRYAGIN'S MAXIMUM OR MINIMUM PRINCIPLE;124
8.12;3.12 ADDITIONAL NECESSARY CONDITIONS AND SUFFICIENCY;127
8.13;3.13 SINGULAR CONTROL;129
8.14;3.14 COMPUTATION OF OPTIMAL CONTROL-DIRECT AND INDIRECT METHODS;133
8.15;3.15 BOUNDARY ITERATIONS;135
8.16;3.16 QUASILINEARIZATION;138
8.17;3.17 GRADIENT METHOD IN FUNCTION SPACE;141
8.18;3.18 SECOND VARIATIONS;144
8.19;3.19 CONJUGATE GRADIENTS;147
8.20;3.20 COMPUTATIONS WITH INEQUALITY CONSTRAINTS;150
8.21;PROBLEMS;153
9;Chapter 4. Dynamic Programming;157
9.1;4.1 HISTORICAL BACKGROUND;157
9.2;4.2 A MULTI-STAGE DECISION PROBLEM;158
9.3;4.3 THE PRINCIPLE OF OPTIMALITY;160
9.4;4.4 A SIMPLE CONTROL PROBLEM IN DISCRETE TIME;162
9.5;4.5 THE GENERAL CALCULATION OF OPTIMAL CONTROL BY DYNAMIC PROGRAMMING;164
9.6;4.6 RESULTS FOR LINEAR MULTIVARIABLE DIGITAL CONTROL SYSTEMS;169
9.7;4.7 AN EXAMPLE OF DISCRETE-TIME CONTROL;173
9.8;4.8 COMPUTATION OF NONLINEAR DISCRETE-TIME CONTROL;176
9.9;4.9 THE CONTINUOUS FORM OF DYNAMIC PROGRAMMING;179
9.10;4.10 A SPECIAL SOLUTION OF THE HAMILTON-JACOBI EQUATION;182
9.11;4.11 DIFFERENTIAL DYNAMIC PROGRAMMING;183
9.12;PROBLEMS;190
10;Chapter 5. Introductory Stochastic Estimation and Control;193
10.1;5.1 DETERMINISTIC MULTIVARIABLE OBSERVERS;193
10.2;5.2 THE KALMAN FILTER;203
10.3;5.3 EXTENSIONS OF THE KALMAN FILTER;209
10.4;5.5 STOCHASTIC FEEDBACK CONTROL;214
10.5;5.6 THE STOCHASTIC LINEAR-QUADRATIC CONTROL PROBLEM;222
10.6;PROBLEMS;226
11;Chapter 6. Actual and Potential Applications;230
11.1;6.1 RESUMÉ–PRACTICAL SIGNIFICANCE OF THE RESULTS;230
11.2;6.2 LINEAR CONTROL WITH QUADRATIC CRITERIA;235
11.3;6.3 STATIC AND DYNAMIC OPTIMIZATION;236
11.4;6.4 APPLICATIONS OF THE KALMAN FILTER;238
12;Chapter 7. Appendices;239
12.1;7.1 STABILITY OF DISCRETE-TIME LINEAR SYSTEMS;239
12.2;7.2 DIFFERENTIATION OF MATRIX EXPRESSIONS;240
12.3;7.3 CANONICAL FORM FOR A SINGLE-OUTPUT LINEA RSYSTEM;240
12.4;7.4 MARKOV SEQUENCES;242
13;Chapter 8. Supplement— Introduction to Matricesand State Variables;245
13.1;8.1 MATRICES AND VECTORS;245
13.2;8.2 NUMERICAL SOLUTION OF ORDINARY DIFFERENTIAL EQUATIONS;259
13.3;8.3 THE GENERALIZED NEWTON-RAPHSON PROCESS;266
13.4;8.4 STATE VARIABLE CHARACTERIZATION OF DYNAMICALSYSTEMS;268
14;Chapter 9. Bibliography and References;279
15;Index;286
16;OTHER TITLES IN THE PERGAMON UNIFIED ENGINEERING SERIES;289