Buch, Englisch, 246 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 406 g
A Practitioner's Handbook
Buch, Englisch, 246 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 406 g
Reihe: Advanced Textbooks in Control and Signal Processing
            ISBN: 978-1-85233-227-3 
            Verlag: Springer
        
The technology of neural networks has attracted much attention in recent 
years. Their ability to learn nonlinear relationships is widely 
appreciated and is utilized in many different types of applications; 
modelling of dynamic systems, signal processing, and control system design 
being some of the most common. The theory of neural computing has matured 
considerably over the last decade and many problems of neural network 
design, training and evaluation have been resolved. This book provides a 
comprehensive introduction to the most popular class of neural network, 
the multilayer perceptron, and shows how it can be used for system 
identification and control. It aims to provide the reader with a 
sufficient theoretical background to understand the characteristics of 
different methods, to be aware of the pit-falls and to make proper 
decisions in all situations. The subjects treated include: 
System identification: multilayer perceptrons; how to conduct informative 
experiments; model structure selection; training methods; model 
validation; pruning algorithms. 
Control: direct inverse, internal model, feedforward, optimal and 
predictive control; feedback linearization and 
instantaneous-linearization-based controllers. 
Case studies: prediction of sunspot activity; modelling of a hydraulic 
actuator; control of a pneumatic servomechanism; water-level control in a 
conical tank. 
The book is very application-oriented and gives detailed and pragmatic 
recommendations that guide the user through the plethora of methods 
suggested in the literature. Furthermore, it attempts to introduce sound 
working procedures that can lead to efficient neural network solutions. 
This will make the book invaluable to the practitioner and as a textbook 
in courses with a significant hands-on component.
Zielgruppe
Professional/practitioner
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik EDV | Informatik Informatik Künstliche Intelligenz Fuzzy-Systeme
- Technische Wissenschaften Elektronik | Nachrichtentechnik Elektronik Sensorik
- Mathematik | Informatik EDV | Informatik Programmierung | Softwareentwicklung Grafikprogrammierung
- Mathematik | Informatik EDV | Informatik Angewandte Informatik Computeranwendungen in Wissenschaft & Technologie
- Technische Wissenschaften Elektronik | Nachrichtentechnik Elektronik Überwachungstechnik
- Technische Wissenschaften Technik Allgemein Computeranwendungen in der Technik
- Mathematik | Informatik EDV | Informatik Professionelle Anwendung Computer-Aided Design (CAD)
Weitere Infos & Material
1. Introduction.- 1.1 Background.- 1.2 Introduction to Multilayer Perceptron Networks.- 2. System Identification with Neural Networks.- 2.1 Introduction to System Identification.- 2.2 Model Structure Selection.- 2.3 Experiment.- 2.4 Determination of the Weights.- 2.5 Validation.- 2.6 Going Backwards in the Procedure.- 2.7 Recapitulation of System Identification.- 3. Control with Neural Networks.- 3.1 Introduction to Neural-Network-based Control.- 3.2 Direct Inverse Control.- 3.3 Internal Model Control (IMC).- 3.4 Feedback Linearization.- 3.5 Feedforward Control.- 3.6 Optimal Control.- 3.7 Controllers Based on Instantaneous Linearization.- 3.8 Predictive Control.- 3.9 Recapitulation of Control Design Methods.- 4. Case Studies.- 4.1 The Sunspot Benchmark.- 4.2 Modelling of a Hydraulic Actuator.- 4.3 Pneumatic Servomechanism.- 4.4 Control of Water Level in a Conic Tank.- References.





