E-Book, Englisch, Band 4, 800 Seiten
Reihe: ESACT Proceedings
Noll Cells and Culture
1. Auflage 2010
ISBN: 978-90-481-3419-9
Verlag: Springer Netherlands
Format: PDF
Kopierschutz: 1 - PDF Watermark
Proceedings of the 20th ESACT Meeting, Dresden, Germany, June 17-20, 2007
E-Book, Englisch, Band 4, 800 Seiten
Reihe: ESACT Proceedings
ISBN: 978-90-481-3419-9
Verlag: Springer Netherlands
Format: PDF
Kopierschutz: 1 - PDF Watermark
Autoren/Hrsg.
Weitere Infos & Material
1;Contents;5
2;Contributors;20
3;Part I Single-Cell Analysis and Engineering;54
3.1;Targeted Gene Knockdown Effects on Recombinant Protein Secretion in CHO Cells;55
3.1.1;1 Introduction;55
3.1.2;2 Materials and Methods;56
3.1.2.1;2.1 Cell Culture Maintenance and siRNA Transfection Assays;56
3.1.2.2;2.2 Cell XpressTM Analysis;56
3.1.3;3 Results and Discussion;57
3.1.3.1;3.1 siRNA Design and Validation;57
3.1.3.2;3.2 Cell XpressTM Analysis of CHO Cells Transfected with IgG siRNAs;57
3.1.3.3;3.3 Cell XpressTM Analysis of CHO Cells Transfected with Biomarker siRNAs;59
3.1.4;4 Conclusion;60
3.1.5;Reference;60
3.2;RNA Silencing Suppressors Boost the Production of Recombinant Proteins and Viruses;61
3.2.1;1 Introduction;61
3.2.2;2 RNA Silencing Suppressors;62
3.2.3;3 RSSs Boost Recombinant Protein Production;63
3.2.4;4 RSSs Boost Virus Production;63
3.2.5;References;63
3.3;Towards the Use of CHO Produced Recombinant Extracellular Matrix Proteins as Bioactive Elements in a 3-D Scaffold for Tissue Engineering;65
3.3.1;1 Introduction;66
3.3.2;2 Materials and Methods;66
3.3.2.1;2.1 Polymer Screening;66
3.3.2.2;2.2 Generation of Cell Lines Expressing Recombinant ECM Proteins;67
3.3.3;3 Results and Discussion;67
3.3.3.1;3.1 Polymer Screening;67
3.3.3.2;3.2 Generation of Cell Lines Expressing Recombinant ECM Proteins;69
3.3.4;References;70
3.4;Transient Gene Expression in Chinese Hamster Ovary Cells at Low Temperature The Effects of Cold-Induced Proteins and an mRNA Regulatory Element;71
3.4.1;1 Introduction;71
3.4.2;2 Materials and Methods;72
3.4.3;3 Results and Discussion;72
3.4.4;References;74
3.5;Single-Cell Approach in Influenza Vaccine Production: Apoptosis and Virus Protein Production;76
3.5.1;1 Introduction;76
3.5.2;2 Materials and Methods;77
3.5.3;3 Results and Discussion;77
3.5.4;References;79
3.6;Chondrogenic Differentiation of Human Mesenchymal Stem Cells During Multiple Subcultivation;80
3.6.1;1 Introduction;81
3.6.2;2 Materials and Methods;82
3.6.2.1;2.1 Cultivation and Passaging;82
3.6.2.2;2.2 Differentiation;82
3.6.2.3;2.3 MIA-ELISA;82
3.6.3;3 Results;83
3.6.4;4 Conclusion;84
3.6.5;References;84
3.7;Cell Xpress-Assisted Analysis of Clone Stability in Recombinant Chinese Hamster Ovary Cells;86
3.7.1;1 Introduction;86
3.7.2;2 Materials and Methods;87
3.7.2.1;2.1 Cell XpressTM Clone Selection and Analysis;87
3.7.2.2;2.2 Cell Culture Maintenance and Growth and Productivity Characterization;87
3.7.2.3;2.3 Molecular Characterization of Cell XpressTM Clones;87
3.7.3;3 Results and Discussion;88
3.7.3.1;3.1 Cell Xpress Clone Generation and Stability Characterization;88
3.7.3.2;3.2 Molecular Characterization of Stable and Unstable CHO Clonal Lines;89
3.8;An Evaluation of the Intrinsic IgG Production Capabilities of Different Chinese Hamster Ovary Parental Cell Lines;91
3.8.1;1 Introduction;91
3.8.2;2 Results and Discussion;92
3.8.2.1;2.1 Analysis of Transient GFP Production in Different Parental CHO Cell Lines;92
3.8.2.2;2.2 Analysis of Transient IgG Production and Secretion in Different Parental CHO Cell Lines;92
3.8.3;3 Conclusions;94
3.8.4;References;94
3.9;Cell Xpress Technology Facilitates High-Producing Chinese Hamster Ovary Cell Line Generation Using Glutamine Synthetase Gene Expression System;95
3.9.1;1 Introduction;95
3.9.2;2 Results and Discussion;96
3.9.2.1;2.1 Secretion Intensity and Population Heterogeneity Analysis Using Cell XpressTM;96
3.9.2.2;2.2 Secretion Dynamics During Single-Cell Clone Expansion;97
3.9.3;3 Conclusions;97
3.9.4;References;98
3.10;CHO-DG44 Cell Line Development by FLP-Targeting High Level Glycoprotein Expression with Significantly Decreased Time Lines;99
3.10.1;1 Introduction;100
3.10.2;2 Results and Discussion;100
3.10.2.1;2.1 The Targeting Strategy;100
3.10.2.2;2.2 Establishment of RMCE Target Clones;100
3.10.2.3;2.3 Case Study -- RMCE Vs. Classical Cell Line Development;103
3.10.3;3 Conclusions;104
3.10.4;References;104
3.11;Transgene Copy Number Impact on Clone Performance;106
3.11.1;1 Introduction;106
3.11.2;2 Forced Integration of Multiple Copies by RMCE;107
3.11.3;3 Hypothesis;108
3.11.4;4 Generation and Characterization of Pharmaceutical Cell Lines;108
3.11.5;5 Reduction of Copy Number in Preestablished Clones;109
3.11.6;6 Conclusions;110
3.11.7;References;111
3.12;Single Use Bioreactors: Expressing Protein in Mammalian Cell Suspension;112
3.12.1;1 Industry Challenges;112
3.12.2;2 In-Vessel Operations;113
3.12.3;3 A New Approach No Shaking, Stirring, Rocking or Rolling;113
3.12.4;4 Experimental Evidence;114
3.12.5;5 Conclusion;117
4;Part II Applied Integrative Physiology;119
4.1;Gene Modified Hematopoietic Stem Cells for the Treatment of Primary Immunodeficiency Diseases;120
4.1.1;1 Text;121
4.1.1.1;1.1 Principles of Hematopoietic Stem Cell Gene Therapy;121
4.1.1.2;1.2 Retroviral Vectors and Transduction Protocols;121
4.1.1.3;1.3 Progress in Gene Therapy for Primary Immunodeficiencies;121
4.1.2;2 Conclusions;123
4.1.3;References;124
4.2;An Avian Cell Line for Production of Highly Attenuated Viral Vectors;126
4.2.1;1 Introduction;127
4.2.2;2 Methods;128
4.2.2.1;2.1 Plasmids;128
4.2.2.2;2.2 Isolation and Culture of Primary Cells;128
4.2.2.3;2.3 Transfection and Focus Recovery;129
4.2.2.4;2.4 Immunofluorescence;129
4.2.2.5;2.5 Virus Propagation and Isolation;130
4.2.3;3 Results and Discussion;130
4.2.4;4 Summary;134
4.2.5;References;134
4.3;Microelectronic Cellular Vitality Monitoring;136
4.3.1;1 Introduction;136
4.3.2;2 Methods and Materials;137
4.3.3;3 Results;139
4.3.4;4 Discussion;140
4.3.5;References;140
4.4;IFN- Glycosylation Macroheterogeneity, Energetic Cell Status and Medium Composition During CHO Cell Cultures;141
4.4.1;1 Introduction;141
4.4.2;2 Materials and Methods;142
4.4.3;3 Results;142
4.4.3.1;3.1 IFN- Production and Energetic Status OF CHO Cells Grown in Enriched Batch Processes;142
4.4.3.2;3.2 IFN- Glycosylation and Energetic Status of CHO Cells Grown in Fed-Batch Process;142
4.4.4;4 Conclusion;145
4.4.5;References;145
4.5;Modelling of Neural Metabolism Using 13C-NMR Spectroscopy and Metabolic Flux Analysis;146
4.5.1;1 Introduction;146
4.5.2;2 Materials and Methods;147
4.5.2.1;2.1 Cells and Culture Conditions;147
4.5.2.2;2.2 Incubation of Astrocytes with [1- 13 C]glucose;147
4.5.2.3;2.3 Metabolic Flux Analysis;147
4.5.3;3 Results;149
4.5.3.1;3.1 Hypoglycemia;149
4.5.3.2;3.2 Anoxia;149
4.5.4;4 Conclusions;150
4.5.5;References;150
4.6;Influence of Glucose and Glutamine Concentration on Metabolism of rCHO Cells;152
4.6.1;1 Introduction;152
4.6.2;2 Materials and Method;153
4.6.3;3 Results and Discussion;153
4.6.4;4 Conclusion;155
4.6.5;References;156
5;Part III Speed and Intensification in Bioprocess Development;157
5.1;Delivery of Biomolecules with Non-Viral Vectors;158
5.1.1;1 Introduction;158
5.1.2;2 The PEI Mechanism;159
5.1.3;3 Synthetic Polymer-Mediated Transient Transfection for Biomanufacturing;160
5.1.4;4 Conclusions and Perspectives;161
5.1.5;References;162
5.2;Circumventing the Pay Now or Pay Later Dilemma: Strategies for Achieving Process Development with Speed and Long-Term Potential;163
5.2.1;1 Introduction;163
5.2.2;2 Process Development Strategy;164
5.2.3;3 Incorporating QbD During Development;166
5.2.4;4 Components of the Manufacturability Assessment;167
5.2.5;5 Application of the Manufacturability Assessment;167
5.2.6;6 Looking Ahead;169
5.3;Recombinant Human Antibody Therapeutics: Supply Strategies for Early and Clinical Development from CHO Cells;171
5.3.1;1 Introduction;172
5.3.1.1;1.1 Choice of Host Cells;172
5.3.1.2;1.2 The GS SystemTM;172
5.3.1.3;1.3 IgG Supply During Antibody Development;173
5.3.2;2 IgG Supply Strategies;174
5.3.2.1;2.1 Supply of IgG from Transient Expression for Early Development Studies;174
5.3.2.2;2.2 Rapid Multi-Gram Production of IgG from GS-CHO Pools;175
5.3.2.3;2.3 Scale Up of IgG Supply for Clinical Trials;177
5.3.3;3 Summary;177
5.3.4;References;178
5.4;Automated Screening of High Producer HEK293F Clones and Analysis of Post-Translational Modifications of Secreted Proteins;179
5.4.1;1 Introduction;179
5.4.2;2 Methods;180
5.4.2.1;2.1 Transfection of HEK293F Cells and Generation of Stable Clones;180
5.4.2.2;2.2 Automated Selection of Cell Lines with Highest Productivity;181
5.4.2.3;2.3 Parallel Analyses of Secreted Clotting Factor Quantity and PTMs Using Two Antibodies;181
5.4.2.4;2.4 Quantification of Protein Secretion and of PTM Levels;181
5.4.3;3 Results and Discussion;182
5.4.4;4 Conclusions and Outlook;186
5.4.5;References;186
5.5;Transcriptomic and Proteomic Analysis of Antibody Producing NS0 Cells Cultivated at Different Cell Densities in Perfusion Culture;187
5.5.1;1 Introduction;187
5.5.2;2 Materials and Methods;188
5.5.2.1;2.1 Cell Line;188
5.5.2.2;2.2 Microarray Analysis;188
5.5.2.3;2.3 2D-PAGE Analysis;188
5.5.3;3 Results and Discussion;189
5.5.4;4 Conclusions;190
5.5.5;References;191
5.6;New Disposable Fixed-Bed Bioreactor for Cell Culture and Virus Production Based on a Proprietary Agitation and Aeration System;192
5.6.1;1 Introduction;192
5.6.2;2 Material and Methods;193
5.6.3;3 Results;194
5.6.4;4 Conclusion and Perspectives;196
5.7;Transcriptomic Analysis of Antibody Producing NS0 Cell Line Under Hypothermic and Hypoxic Conditions;197
5.7.1;1 Introduction;197
5.7.2;2 Materials and Methods;198
5.7.3;3 Results;200
5.7.4;References;200
5.8;Semi-Continuous Cultures as a Tool for Cell Line Characterization During Process Development;201
5.8.1;1 Introduction;201
5.8.2;2 Material and Methods;201
5.8.3;3 Results;202
5.8.3.1;3.1 Semicontinuous Culture, Performance;202
5.8.3.2;3.2 Use of Semicontinuous Cultures for Cell Characterization;203
5.8.4;References;204
5.9;Behaviour of GS-CHO Cell Lines in a Selection Strategy;205
5.9.1;1 Introduction;206
5.9.2;2 Methods;206
5.9.3;3 Results and Discussion;207
5.9.4;4 Summary and the Future;208
5.9.5;References;209
5.10;3D Cultures: Effect on the Hepatocytes Functionality;210
5.10.1;1 Introduction;211
5.10.2;2 Material and Methods;211
5.10.3;3 Results and Discussion;212
5.10.3.1;3.1 Aggregates as 3D Structures;212
5.10.3.2;3.2 Effect of Inoculum Concentration and Impeller Type;212
5.10.3.3;3.3 Effect of Media Composition;213
5.10.4;4 Conclusions;214
5.10.5;References;214
5.11;Differential Protein Expression Induced by c-Myc Over-Expression: Proteomic Analysis of a CHO Cell Line with Increased Proliferation Capacity;216
5.11.1;1 Introduction;217
5.11.2;2 Results and Discussion;217
5.11.3;3 Conclusion;219
5.11.4;References;220
5.12;Development of Pilot-Scale Orbital Shake Bioreactors: Ideal for Cost-Effective and Efficient Transient Gene Expression;221
5.12.1;1 Introduction;221
5.12.2;2 Materials and Methods;221
5.12.3;3 Results and Discussion;222
5.12.4;4 Conclusion;223
5.12.5;References;223
5.13;Helical Tracks in Shaken Cylindrical Bioreactors Improve Oxygen Transfer and Increase Maximum Cell Density Obtainable for Suspension Cultures of Mammalian Cells;224
5.13.1;1 Introduction;224
5.13.2;2 Materials and Methods;225
5.13.2.1;2.1 Cell Culture and Growth Assessment;225
5.13.2.2;2.2 DO Measurement and k L a Determination;226
5.13.3;3 Results and Discussion;226
5.13.3.1;3.1 Determination of k L a for Helical Track Bottles;226
5.13.3.2;3.2 Assessment of Cell Growth in Helical Track Vessels;226
5.13.4;4 Conclusions;228
5.13.5;References;228
5.14;Dynamic Optimisation of CHO-IFN Cell Culture Fed-Batch Time-Profile;230
5.14.1;1 Introduction;230
5.14.2;2 Model Overview;231
5.14.3;3 Model Structure;231
5.14.4;4 Global Parameter Sensitivity Analysis;232
5.14.5;5 Simulation and Optimisation Results;233
5.14.6;6 Conclusions;235
5.14.7;Notations;235
5.14.8;References;236
5.15;Long-Term 3D-Culture of HEP G2 Cell Line on Macroporous Ceramic Carriers;237
5.15.1;1 Introduction;237
5.15.2;2 Bioreactor Systems and Carriers;238
5.15.3;3 Results;238
5.15.4;References;240
5.16;An Integrated Production Process for Human Growth Hormone;241
5.16.1;1 Introduction;242
5.16.2;2 Materials and Methods;242
5.16.3;3 Results;242
5.16.4;4 Conclusions;244
5.17;Efficient Production of Human Monoclonal Antibodies by an Improved Fructose-Based Human Cell Culture;245
5.17.1;1 Introduction;245
5.17.2;2 Materials and Methods;246
5.17.3;3 Results and Discussion;247
5.17.4;References;248
5.18;Coupling Between Cell Kinetics and CFD to Establish Physio-Hydrodynamic Correlations in Various Stirred Culture Systems;249
5.18.1;1 Introduction;249
5.18.2;2 Materials and Methods;250
5.18.2.1;2.1 Cell Cultures;250
5.18.2.2;2.2 Numerical Simulations;250
5.18.3;3 Results;250
5.18.3.1;3.1 Culture Kinetics;250
5.18.3.2;3.2 Physio-Hydrodynamic Correlations;251
5.18.4;4 Conclusions;253
5.19;Confocal Microscopy Observation of CHO Cells Cultivated in Presence of Fluorescent Labelled Rapeseed Peptides;254
5.19.1;1 Introduction;254
5.19.2;2 Material and Methods;255
5.19.3;3 Results;255
5.19.3.1;3.1 Labelling of Rapeseed Peptides;255
5.19.3.2;3.2 Incubation of CHO Cells in Presence of Labelled-Peptides;256
5.19.4;References;257
5.20;Growth and Production Characteristics of Four Mammalian Cell Lines on a Cost-Effective Serum-Free Medium;258
5.20.1;1 Materials and Methods;258
5.20.2;2 Results;259
5.20.2.1;2.1 Growth Characteristics of SP2/0, CHO, EBNA 293 and Hybridoma Cells in Serum-Free Media;259
5.20.2.2;2.2 Production of Monoclonal Antibodies by Hybridomas;259
5.20.2.3;2.3 Transient Transfection Optimisation and Recombinant Protein Expression;261
5.20.3;3 Conclusions;262
5.20.4;References;262
5.21;A Serum-Free, Transient Transfection System for Enhancing Production of Recombinant Antibodies in Mammalian Cells;263
5.21.1;1 Introduction;263
5.21.2;2 Materials and Methods;264
5.21.2.1;2.1 Cell Culture;264
5.21.2.2;2.2 Transfection;264
5.21.3;3 Results and Discussion;264
5.21.4;References;266
5.22;CFD Study of the Fluid and Particle Dynamics in a Spin-Filter Perfusion Bioreactor;267
5.22.1;1 Introduction;267
5.22.2;2 Aims of the Work;268
5.22.3;3 Methodology;268
5.22.4;4 Results;268
5.22.5;References;272
5.23;High-Yielding CHO Cell Pools for Rapid Production of Recombinant Antibodies;273
5.23.1;1 Introduction;273
5.23.2;2 Isolation of High-Producing Pools;274
5.23.3;3 Scale-Up, Stability and Compatability with Disposables Technology;274
5.23.4;4 Product Quality;275
5.23.5;5 Robust Production Process;277
5.23.6;6 Cloning Out from Pools;278
5.23.7;7 Summary;278
5.23.8;8 Methods;278
5.24;Increasing Upstream Process Development Efficiency by Implementing Platform Glutamine Synthetase Cell Culture Processes;279
5.24.1;1 Introduction;280
5.24.2;2 Methods and Materials;280
5.24.3;3 Results and Discussion;280
5.24.3.1;3.1 Initial Analysis of Model GS-CHO Cell Line (1G5);281
5.24.3.2;3.2 First Iteration of the Fed-Batch Process;283
5.24.3.3;3.3 Second and Third Iteration of the Fed-Batch Process;284
5.24.3.4;3.4 Fed Batch v.4 with Multiple IgG-Expressing GS-Cell Lines;285
5.25;Implementation of High Throughput Systems for Media and Process Development;286
5.25.1;1 Introduction;286
5.25.2;2 Observations;287
5.25.3;3 Conclusions;288
5.26;Comparison of Cell Culture Methods for Obtainingof rHU-EPO to Large Scale;289
5.26.1;1 Introduction;289
5.26.2;2 Material and Methods;289
5.26.3;3 Results;290
5.26.4;4 Conclusions;291
5.26.5;References;291
5.27;Optimization and Comparison of Different DNA Methyl Transferase and Histone Deacetylase Inhibitors for Enhancing Transient Protein Expression;293
5.27.1;1 Introduction;293
5.27.2;2 Materials and Methods;294
5.27.2.1;2.1 Cell Culture;294
5.27.2.2;2.2 Transfection;294
5.27.3;3 Results and Discussion;294
5.27.4;References;296
5.28;Proteomic Characterisation of a Glucose-Limited CHO Perfusion ProcessAnalysis of Metabolic Changes and Increase in Productivity;297
5.28.1;1 Introduction;297
5.28.2;2 Materials and Methods;298
5.28.2.1;2.1 Perfusion Cultivation;298
5.28.2.2;2.2 Proteome Analysis;298
5.28.3;3 Results;299
5.28.3.1;3.1 Glucose-Limited Perfusion Cultivation of CHO-MUC1-IgG2a;299
5.28.3.2;3.2 Proteome Analysis;299
5.28.4;Reference;301
5.29;Evaluation of Alternative Signal Sequences;302
5.29.1;1 Methods;302
5.29.2;2 Results and Discussion;303
5.29.3;3 Summary and the Future;304
5.29.4;References;305
5.30;Process Development for the GMP Productionof N-Acetylgalactosamine-6-Sulfate Sulfatase (GALNS) Expressed by CHO Cells;306
5.30.1;1 Introduction;306
5.30.2;2 Results and Discussion;308
5.30.3;3 Conclusion;310
5.30.4;References;310
5.31;Improvement of a CHO Fed-Batch Process by Fortifying with Plant Peptones;311
5.31.1;1 Materials and Methods;311
5.31.2;2 Results;312
5.31.2.1;2.1 Experiment 1: Neutralization of the Toxic Effect from Amino Acid Over-Feeding by Peptones Addition;312
5.31.2.2;2.2 Experiment 2: Dose Study in 50 ml Filtered Tubes;312
5.31.3;3 Conclusion;314
5.32;O-Glycans on Recombinant MUC1 Produced in CHO K1 Cells Become Less Sialylated with Increased Protein Productivity, as Determined by LC-ESI MS;315
5.32.1;1 Introduction;316
5.32.2;2 Materials and Methods;316
5.32.3;3 Results and Discussion;317
5.32.4;4 Conclusions;318
5.32.5;References;318
5.33;A Multiple Minibioreactor Platform for Parallel and Automated Mammalian Cell Culture;319
5.33.1;1 Introduction;319
5.33.2;2 Materials and Methods;320
5.33.2.1;2.1 Culture System;320
5.33.2.2;2.2 Analytical Systems;320
5.33.2.3;2.3 System Operation;320
5.33.3;3 Results and Discussion;320
5.33.3.1;3.1 Hybridoma Cells Growth at Various 0 FCS;320
5.33.3.2;3.2 Toxicicy of Neomycin on Vero Cells;322
5.33.4;4 Conclusions;323
5.34;Cultivation of Adherent-Dependent Animal Cells on Microcarriers in a New Disposable Reactor;324
5.34.1;1 Introduction;324
5.34.2;2 Material and Methods;325
5.34.3;3 Results;326
5.34.4;4 Conclusion and Perspectives;328
5.35;CHO Cells Cultivation and Antibodies Production in a New Disposable Bioreactor Based on Magnetic Driven Centrifugal Pump;329
5.35.1;1 Introduction;329
5.35.2;2 Material and Methods;330
5.35.3;3 Results;330
5.35.4;4 Conclusion and Perspectives;332
5.36;Stability and Productivity of CHO Pools with Respect to Culture Age, Cryopreservation and 20 L Bioreactor Cultivation;334
5.36.1;1 Introduction;334
5.36.2;2 Material and Methods;335
5.36.3;3 Results and Discussion;336
5.36.4;4 Conclusion and Outlook;338
5.36.5;References;338
5.37;In Vitro Disassembly and Reassembly of Triple-Layered Rotavirus-Like Particles;339
5.37.1;1 Introduction;339
5.37.2;2 Materials and Methods;340
5.37.2.1;2.1 Production of RLPs;340
5.37.2.2;2.2 Kinetics of TLP Disassembly;340
5.37.2.3;2.3 Kinetics of TLP Reassembly;341
5.37.3;3 Results and Discussion;341
5.37.3.1;3.1 Kinetics of TLP Disassembly;341
5.37.3.2;3.2 Kinetics of TLP Reassembly;342
5.37.4;4 Conclusion;343
5.37.5;References;344
5.38;Influence of Culture Conditions on Insect Cell Growthand Protein Production -- Comparison of Wave Bioreactorand Shake Flasks;345
5.38.1;1 Materials and Methods;345
5.38.2;2 Results and Discussion;346
5.38.2.1;2.1 Insect Cell Growth in Shake Flasks;346
5.38.2.2;2.2 Insect Cell Growth in Wave Bioreactor;347
5.38.2.3;2.3 Protein Production in Shake Flasks;348
5.38.2.4;2.4 Protein Production in Wave Bioreactor;349
5.38.3;3 Conclusion;350
5.39;Process Intensification Based on Nano-Structured Carbon Carrier Materials and Disposable Devices;351
5.39.1;1 Introduction;352
5.39.2;2 Materials and Methods;352
5.39.3;3 Results;353
5.39.3.1;3.1 Product Yield and Medium Consumption;353
5.39.3.2;3.2 Cell Numbers and pH Value;353
5.39.4;4 Conclusions;355
5.39.5;5 Outlook;356
5.39.6;References;356
5.40;Accelerating Fed-Batch Process Development Using Rationally Designed Feed Media;357
5.40.1;1 Methods;357
5.40.1.1;1.1 Project Phases;357
5.40.1.2;1.2 Cell Culture;358
5.40.1.3;1.3 Spent Media Analysis;358
5.40.2;2 Feed Medium Development;358
5.40.3;3 Development of Hydrolysate and Integration with Feed for Optimal Performance;358
5.40.4;4 Process Development of Feed Volume and Timing;360
5.40.5;5 Conclusions;361
5.40.6;6 Summary;361
5.40.7;References;362
5.41;Development of a Robust Small-Scale Production Format that Is Predictive of Bioreactor Performance;363
5.41.1;1 Introduction;363
5.41.2;2 Methods;364
5.41.3;3 Results;365
5.41.4;4 Conclusion;368
5.41.5;References;368
5.42;Biomass Monitoring and CHO Cell Culture Optimization Using Capacitance Spectroscopy;369
5.42.1;1 Introduction;369
5.42.2;2 Aims of the Work;371
5.42.3;3 Methodology;371
5.42.4;4 Results;372
5.42.5;References;374
5.43;Characterizing Physiology and Metabolism of High-Density CHO Cell Perfusion Cultures Using 2D-NMR Spectroscopy;375
5.43.1;1 Introduction;376
5.43.2;2 Materials and Methods;376
5.43.2.1;2.1 Cell Line Culture Medium and Bioreactor Operation;376
5.43.2.2;2.2 Analytical Methods;377
5.43.2.3;2.3 Sample Preparation for NMR Analysis;377
5.43.2.4;2.4 2D-NMR Analysis;377
5.43.2.5;2.5 Biochemical Network and Metabolic Flux Analysis;378
5.43.3;3 Results;378
5.43.3.1;3.1 Cell Density and Viability;378
5.43.3.2;3.2 Glucose, Glutamine, Lactate, and Ammonium;379
5.43.3.3;3.3 Metabolic Fluxes;381
5.43.4;4 Discussion;382
5.43.4.1;4.1 Pentose Phosphate Pathway;382
5.43.4.2;4.2 Pyruvate Carboxylase Flux;382
5.43.4.3;4.3 Implications for Bioprocess Development;382
5.43.5;5 Conclusions;382
5.43.6;References;383
5.44;BI HEX Platform for Fast Track Generation of High Producer Cell Lines Leading to High-Titer Processes for Production of Therapeutic Proteins from Mammalian Cells;384
5.44.1;1 Introduction;385
5.44.2;2 Molecular Biology;385
5.44.3;3 Cell Biology;385
5.44.4;4 Cell Culture Technology;387
5.44.5;5 Conclusion;387
5.44.6;References;388
5.45;Management of Handling, Long-Term Stability and Shipping of Human T-Lymphocytes Bags for Clinical Studies;389
5.45.1;1 Introduction;389
5.45.2;2 Methods;390
5.45.3;3 Results and Discussion;391
5.45.3.1;3.1 Biological Activity After Long Term Storage;391
5.45.3.2;3.2 Long Distance Shipping;391
5.45.4;4 Conclusions;392
5.45.5;References;393
5.46;Mass Transfer in the CELL-tainer Disposable Bioreactor;394
5.46.1;1 Introduction;394
5.46.2;2 Results;394
5.46.3;3 Conclusion;396
5.47;Efficient Production of Human Monoclonal Antibodies by Combining In Vitro Immunization and Phage Display Methods;397
5.47.1;1 Introduction;397
5.47.2;2 Methods;398
5.47.2.1;2.1 In Vitro Immunization;398
5.47.2.2;2.2 Construction of Phage Antibody Library;398
5.47.2.3;2.3 Detection and Production of ME-Specific Antibody;398
5.47.3;3 Results and Discussion;399
5.47.4;References;399
5.48;Measurement and Control of Viable Cell Density in a Mammalian Cell Bioprocessing Facility: Validation of the Software;400
5.48.1;1 Materials and methods;401
5.48.2;2 Results;402
5.48.3;3 Discussion;402
5.48.4;4 Conclusions;404
5.48.5;References;405
5.49;Development, Validation, and Application of a Fully Integrated Automation System for Screening and Selection of High Yielding Production Cell Lines;406
5.49.1;1 System Overview;406
5.49.2;2 Preparation Stage: Automated Liquid Handling;407
5.49.3;3 Stage 1: High Throughput ELISA Screening;407
5.49.4;4 Stage 2: Digital Imaging to Visualize Cells Secreting Antibody;407
5.49.5;5 Stage 3: Transfer and Expansion of High Producing Cell Lines;408
5.49.6;6 V-Prep Validation;408
5.49.7;7 Tecan Spectrafluor Reader Validation;408
5.49.8;8 Tecan Genesis and Nikon Microscope Validation;408
5.49.9;9 Validation of the ELISA Function;409
5.49.10;10 Comparison of ELISA Data Generated by Automation System and Standard Method;409
5.49.11;11 Comparison of Cell Lines Selected by Automation and Standard Methods;410
5.49.12;12 Summary;410
5.50;Monitoring of Cell Activity: Online Oxygen Uptake Rates in Pulsed Aerated Cell Culture;411
5.50.1;1 Introduction;411
5.50.2;2 Material and Methods;412
5.50.3;3 Results and Discussion;412
5.50.4;4 Conclusions;412
5.50.5;References;413
6;Part IV Systems Biotechnology;414
6.1;Metabolite Analysis in Mammalian Cells: How to Generate Reliable Data Sets?;415
6.1.1;1 Introduction;416
6.1.2;2 Materials and Methods;416
6.1.3;3 Results and Discussion;418
6.1.3.1;3.1 Extraction Screening;418
6.1.3.2;3.2 Optimization of the MeOH/CHCl 3 Extraction Method;419
6.1.3.3;3.3 Determination of Recovery;423
6.1.3.4;3.4 Starvation Experiments;424
6.1.4;4 Conclusions;424
6.1.5;References;424
6.2;Cell-to-Cell Communication for Cell Density-Controlled Bioprocesses;425
6.2.1;1 Cell-to-Cell Communication Systems Cell Phones;426
6.2.2;2 Multi-Step Multi-Species Communication Systems;427
6.2.3;3 Conclusion;429
6.2.4;References;429
6.3;Metabolome Analysis in Mammalian Cells: Development and Application of a Sampling Technique;431
6.3.1;1 Introduction;432
6.3.2;2 Materials and Methods;433
6.3.2.1;2.1 Cell Line and Cultivation;433
6.3.2.2;2.2 Sampling;433
6.3.2.3;2.3 Cell Disruption and Cell Counting;433
6.3.2.4;2.4 LCMS and LCMS-MS Analytics;434
6.3.3;3 Results and Discussion;434
6.3.4;References;438
6.4;Differential Expression Profiling of Industrially Relevant CHO Cell Phenotypes Using a Proprietary CHO-Specific Microarray and Proteomics Technology Platforms;439
6.4.1;1 Introduction;439
6.4.2;2 Collaboration Overview;440
6.4.3;3 Data Analysis;440
6.4.4;4 Target Validation;441
6.5;Towards a Systems-Level Understanding of Increased Specific Productivity in Proliferation Arrested Myeloma NS0 Cells;442
6.5.1;1 Introduction;442
6.5.2;2 Results and Discussion;443
6.5.3;3 Conclusion;445
6.5.4;References;445
6.6;Proteomic Analysis of Influenza a Virus Infected Mammalian Cells by 2D-DIGE;446
6.6.1;1 Introduction;446
6.6.2;2 Materials and Methods;447
6.6.3;3 Results and Discussion;447
6.6.4;References;449
6.7;Involvement of SRC- and MAP Kinase-Signalings in the Effect of Sericin on Cellular Proliferation and Survival;450
6.7.1;1 Introduction;450
6.7.2;2 Materials and Methods;451
6.7.2.1;2.1 Cell Line and Culture Conditions;451
6.7.2.2;2.2 Two-Dimensional Electrophoresis;451
6.7.3;3 Results;451
6.7.3.1;3.1 The Effect of Sericin on Proliferation of Hybridoma Cell Line 2E3-O;451
6.7.3.2;3.2 Proteome Analysis Using 2-DE;452
6.8;The Unfolded Protein Response and Recombinant Protein Production from In Vitro Cultured Mammalian Cells;453
6.8.1;1 Introduction;453
6.8.2;2 Materials and Methods;454
6.8.2.1;2.1 Reagents;454
6.8.2.2;2.2 Cell Lines;454
6.8.2.3;2.3 Growth Profiles of CHO and NS0 Upon UPR Induction;454
6.8.3;3 Results;454
6.8.4;4 Conclusions;456
6.8.5;References;456
6.9;A Scalable Process for Helper-Dependent Adenoviral Vector Production Using PEI-Derived Transfection Strategy in Suspension Culture;457
6.9.1;1 Introduction;457
6.9.2;2 Materials and Methods;458
6.9.2.1;2.1 Cells and Viruses;458
6.9.2.2;2.2 PEI-Adenofection;458
6.9.2.3;2.3 Amplification Step Via Co-Infection;458
6.9.3;3 Results and Discussion;459
6.9.4;4 Conclusion;461
6.9.5;References;461
6.10;Functional Analysis of ER Stress Pathway Genes for Apoptosis of NS/0 Cell Line Using RNAi Methods;462
6.10.1;1 Introduction;462
6.10.2;2 Methods;463
6.10.3;3 Results;463
6.10.4;4 Conclusions;465
6.10.5;References;466
6.11;Identification of New Protein Substrate Candidates of Transglutaminase in Rat Liver Extracts: Use of 5-(Biotinamido) Pentylamine as a Probe;468
6.11.1;1 Introduction;468
6.11.2;2 Materials and Methods;469
6.11.2.1;2.1 Preparation of Rat Liver Extract;469
6.11.2.2;2.2 In Vitro TG-Mediated Biotin Labeling;469
6.11.2.3;2.3 Isolation of Biotinylated Proteins with Avidin-Affinity Column;469
6.11.2.4;2.4 Amino Acid Sequencing Analyses;470
6.11.2.5;2.5 Identification of TG Substrates by Immunoblotting;471
6.11.3;3 Results and Discussion;471
6.11.4;References;473
6.12;Metabolic Flux Distributions of Adherently Growing MDCK Cells in Different Media;474
6.12.1;1 Introduction;474
6.12.2;2 Phase Model;475
6.12.3;3 Metabolic Network Model;476
6.12.4;4 Results and Conclusions;476
6.12.5;References;477
6.13;Expression of Dermal Extracellular Matrix Proteins in a Newly Developed Full-Thickness Skin Model;478
6.13.1;1 Introduction;478
6.13.2;2 Materials and Methods;479
6.13.2.1;2.1 Production of the Skin Model;479
6.13.2.2;2.2 Immunohistochemistry;479
6.13.2.3;2.3 Gene Expression Analysis;479
6.13.3;3 Results;479
6.13.4;4 Summary and Conclusions;481
6.13.5;References;482
6.14;Development of Preparations with Antiviral and Immunostimutory Effects from Extracts of Green Parts of Coniferous Plants;483
6.14.1;1 Introduction;484
6.14.2;2 Materials and Methods;484
6.14.2.1;2.1 Cell Culture--MDCK from Cell Culture Collection of SRC VB VECTOR;484
6.14.3;3 Results;487
6.15;Serum-Free Transfection of CHO Cells with Chemically Defined Transfection Systems to Generate Transient and Stable Cell Lines;488
6.15.1;1 Introduction;488
6.15.2;2 Overview;489
6.15.3;3 Preparation and Transfection Studies;489
6.15.4;4 Conclusion;489
6.15.5;References;491
6.16;Glycomics: Development and Characterization of Glycan-Based Biotechnological Products;492
6.17;Development of a Cell-Culture-Based Platform for Viral Vaccine Production;494
6.17.1;1 Introduction;495
6.17.2;2 Materials and Methods;495
6.17.2.1;2.1 Cell Lines;495
6.17.2.2;2.2 Virus Production;495
6.17.3;3 Results;495
6.17.4;4 Conclusions;497
6.17.5;References;497
6.18;Screening of Natural Compounds Affecting Type I Interferon Signalling;498
6.18.1;1 Introduction;498
6.18.2;2 Results;499
6.18.3;3 Conclusions;500
6.18.4;Reference;500
7;Part V Competing and Complementary Approaches to Animal Cell Technologies;501
7.1;Therapeutic Proteins from Transgenic Cows Milk;502
7.1.1;1 Introduction;502
7.1.2;2 Methodology;503
7.1.2.1;2.1 Obtention of the Founder Animal;503
7.1.2.2;2.2 Expansion of the Transgenic Herd;504
7.1.2.3;2.3 Lactation and Bioactive Protein Levels;504
7.1.3;3 Results;505
7.1.4;4 Bovines Transgenic for Human Insulin;506
7.1.5;5 Conclusion;506
7.1.6;References;506
7.2;Development of Edible Plant Vaccines;508
7.2.1;References;511
7.3;Human Cell Lines for Production of Biopharmaceuticals;513
7.3.1;1 Introduction;514
7.3.2;2 Materials and Methods;515
7.3.3;3 Results and Discussion;516
7.3.4;4 Expression of Reference Proteins in Adherent CAP Cells;517
7.3.5;References;520
7.4;Concentration and Purification of Densonucleosis Virus by Tangential Membrane Filtration and by Ion Exchange Membranes;522
7.4.1;1 Introduction;522
7.4.2;2 Materials and Methods;523
7.4.2.1;2.1 Production of AeDNV Particles;523
7.4.2.2;2.2 Virus Titer Determination;523
7.4.2.3;2.3 Tangential Flow Filtration;523
7.4.2.4;2.4 Ion Exchange Experiments;524
7.4.3;3 Results and Conclusion;524
7.4.4;References;525
7.5;Effect of ManNAc and its Derivatives on Glycosylation to Proteins Produced by Mammalian Cell Culture;526
7.5.1;1 Introduction;526
7.5.2;2 Materials and Methods;527
7.5.2.1;2.1 Cell Line and Culture Condition;527
7.5.2.2;2.2 Two-Dimensional Electrophoresis;527
7.5.3;3 Results and Discussion;527
7.5.4;4 Conclusion;528
7.6;Purification of a Chimeric Simian Human Immunodeficiency Virus-Like Nanoparticle from HEK293 Cell Culture;529
7.6.1;1 Introduction;530
7.6.2;2 Experimental;531
7.6.2.1;2.1 Expression of the Chimeric VLP;531
7.6.2.2;2.2 VLP Purification from Culture Media;531
7.6.2.3;2.3 SDS-PAGE and Immunoblot Analysis;531
7.6.2.4;2.4 Determination of Protein Concentration;532
7.6.3;3 Results;532
7.6.4;4 Conclusion;534
7.6.5;References;534
7.7;Effects of Plant Peptones Supplemented Medium on CHO Cells;536
7.7.1;1 Introduction;536
7.7.2;2 Materials and Methods;537
7.7.2.1;2.1 Cell Culture;537
7.7.2.2;2.2 Peptones;537
7.7.2.3;2.3 Apoptosis Assays;537
7.7.3;3 Results;538
7.7.4;4 Conclusions;539
7.7.5;References;539
7.8;Synthetic Low Density Lipoprotein a Novel Biomimetic Lipid Supplement for Serum Free Tissue Culture;540
7.8.1;1 Introduction;540
7.8.2;2 Synthetic Low Density Lipoprotein;541
7.8.3;3 Cellular Uptake;541
7.8.4;4 Cellular Proliferation;543
7.8.5;5 Conclusion;543
7.8.6;References;544
8;Part VI Solutions and Applications;545
8.1;Scale-Down Approach for Animal-Free Polio Vaccine Production;546
8.1.1;1 Introduction;546
8.1.2;2 Materials and Methods;547
8.1.2.1;2.1 Vero Cells and Polio Virus;547
8.1.2.2;2.2 Polio Production Process;547
8.1.2.3;2.3 The Data-Set and its Organisation;548
8.1.2.4;2.4 Multivariate Data Analysis (MVA);548
8.1.2.5;2.5 Scale-Down Experiments and Animal-Component Free Media;549
8.1.3;3 Results and Discussion;549
8.1.3.1;3.1 Process Analysis by PCA;549
8.1.3.2;3.2 Performance Analysis of Cell Culture at 350-L Scale;550
8.1.3.3;3.3 Scale-Down and Animal-Component Free Culture;551
8.1.3.4;3.4 Performance Analysis of Virus Culture and Scale-Down;553
8.1.4;4 Conclusions;554
8.1.5;References;554
8.2;Novel Scaffolds for Tissue Engineering Nano-Structured Surfaces Promote Selective Cell Attachment and Cell Differentiation;556
8.2.1;1 Introduction;556
8.2.2;2 Materials and Methods;557
8.2.3;3 Results and Discussion;558
8.2.3.1;3.1 Bone Cell Differentiation;558
8.2.3.2;3.2 Cell Selective Surfaces;560
8.2.4;4 Summary and Conclusions;562
8.2.5;References;562
8.3;Unconventional Experimental Concepts Enabling High Speed High Performance Media/Process Development;563
8.3.1;1 Introduction;563
8.3.2;2 Material and Methods;564
8.3.3;3 Results and Discussions;564
8.3.3.1;3.1 Concept 1;564
8.3.3.2;3.2 Concept 2;566
8.3.4;Conclusions;569
8.3.5;References;569
8.4;A Study on Bioscaffolds of Polysialic Acid and -Glucan for Cell Culture and Tissue Engineering Applications;570
8.4.1;1 Introduction;570
8.4.2;2 Materials and Methods;571
8.4.3;3 Results and Discussion;572
8.4.4;4 Conclusions;572
8.4.5;References;575
8.5;A Preliminary Study on Spider Silk as Biomaterial for Peripheral Nerve Regeneration;576
8.5.1;1 Introduction;576
8.5.2;2 Materials and Methods;577
8.5.2.1;2.1 Materials;577
8.5.2.2;2.2 PC-12;577
8.5.2.3;2.3 Immortalized Schwann cells (ISC);577
8.5.2.4;2.4 Methods;578
8.5.3;3 Results and Discussion;578
8.5.4;4 Conclusion and Outlook;580
8.5.5;References;581
8.6;Investigation of the Effect of Mechanical Strain on the Osteogenic Differentiation of Mesenchymal Stem Cells;582
8.6.1;1 Introduction;582
8.6.2;2 Materials and Methods;583
8.6.2.1;2.1 AdMSC Isolation and Cultivation;583
8.6.2.2;2.2 Scaffold Materials;583
8.6.2.3;2.3 Strain Experiments;584
8.6.2.4;2.4 Alkaline Phosphatase Activity Test;584
8.6.2.5;2.5 MTT Assay;585
8.6.2.6;2.6 RT-PCR;585
8.6.2.7;2.7 Fabrication of Flexible Microelectrode Dishes;585
8.6.2.8;2.8 Electric Cell-Substrate Impedance Sensing (ECIS);586
8.6.3;3 Results and Conclusions;587
8.6.4;4 Summary;592
8.6.5;References;592
8.7;Biofunctional Polymer-Mineral Composites as Scaffolds for Bone Tissue Engineering;593
8.7.1;1 Introduction;594
8.7.2;2 Materials and Methods;594
8.7.2.1;2.1 Preparations of Composites;594
8.7.2.2;2.2 Cell Culture;595
8.7.3;3 Results;595
8.7.3.1;3.1 Preparation of Conjugates;595
8.7.3.2;3.2 Cell Culture;597
8.7.4;4 Conclusions and Outlook;597
8.7.5;References;599
8.8;New Water-Soluble Polymers for Construction of Biofunctionalized Scaffolds for Bone Tissue Engineering: Synthesis and Adsorption Study;600
8.8.1;1 Introduction;601
8.8.2;2 Results and Discussion;601
8.8.2.1;2.1 Polymer Synthesis;601
8.8.2.2;2.2 Adsorption;602
8.8.3;3 Conclusions;606
8.8.4;References;606
8.9;Selection of High-Producing Cells Via Cell Sorting Using an Affinity Matrix;607
8.9.1;1 Introduction;607
8.9.2;2 Materials and Methods;608
8.9.2.1;2.1 Affinity Matrix Staining;608
8.9.2.2;2.2 Gating During the Sorts;608
8.9.3;3 Results;610
8.9.4;4 Conclusion;611
8.9.5;References;611
8.10;The Effects of Medium Supplement on High-Level Production of Recombinant Human Factor IX in CHO Cell;612
8.10.1;1 Introduction;612
8.10.2;2 Materials and Methods;613
8.10.3;3 Result and Discussion;614
8.10.4;References;617
8.11;Case Study Large Scale Cell Culture Facility;618
8.11.1;1 A Biotech Landmark in the Heart of Europe;618
8.11.2;2 Conclusion;619
8.12;Glycosylation of Influenza A Virus Hemagglutinin;620
8.12.1;1 Introduction;620
8.12.2;2 Materials and Methods;621
8.12.3;3 Results and Discussion;621
8.12.4;References;622
8.13;Production of Retroviral Pseudotype Vectors in Fixed Bed Reactors for Use in Gene Therapy;623
8.13.1;1 Introduction;623
8.13.2;2 Materials and Methods;624
8.13.3;3 Results;625
8.13.4;4 Conclusion;625
8.13.5;References;626
8.14;Swellscreen -- Rapid Baculovirus Titration Methodin Microplate Format;627
8.14.1;1 Introduction;627
8.14.2;2 Experimental Set-Up;628
8.14.3;3 Results;628
8.14.3.1;3.1 Scale-Down;628
8.14.3.2;3.2 Validation with BacPAK;629
8.14.4;4 Discussion;629
8.14.5;5 Conclusion;630
8.14.6;References ;631
8.15;Comparing Vero and MDCK Cells for Influenza A Virus Production in Microcarrier Systems;632
8.15.1;1 Introduction;632
8.15.2;2 Materials and Methods;633
8.15.3;3 Results and Discussion;633
8.15.4;References;635
8.16;Expansion of Human Articular Chondrocytes on Microcarriers Enhances the Production of Cartilage Specific Matrix Components;636
8.16.1;1 Introduction;637
8.16.2;2 Methods;637
8.16.3;3 Results;638
8.16.4;4 Conclusions;640
8.16.5;References;640
8.17;Automated Cell Culture Handling Characteristics and Procedures;641
8.18;Bioreactor Satellite Culture Experiments in the Start-Up of a Cell Culture Technical Support Lab;643
8.18.1;1 Set-Up of the Technical Support Lab;644
8.18.2;2 Satellite Culture Principles and CCTS Lab Conditions;644
8.18.3;3 Bioreactor Comparison (Small Scale Vs. Large Scale);645
8.18.4;4 Culture Performance: Growth and MAb Production;645
8.18.5;5 Culture Performance: Metabolites;648
8.18.6;6 Conclusion and Perspectives;650
8.19;Advantages of Hydrodynamic Cell Separation in Industrial Cell Culture Processes;652
8.19.1;1 Introduction;652
8.19.2;2 Materials and Methods;654
8.19.3;3 Results;654
8.19.4;4 Conclusion;658
8.19.5;References;658
8.20;Optimization and Characterization of the Process for Large Volume Cell Banking in Bags;660
8.20.1;1 Introduction;660
8.20.2;2 Materials and Methods;661
8.20.3;3 Results and Discussion;661
8.20.4;References;663
8.21;Development of Screening Method for IgA-Promoting Factors Derived from Food Extracts Using a Human Myeloma Cell Line;664
8.21.1;1 Introduction;664
8.21.2;2 Materials and Methods;665
8.21.3;3 Results and Discussion;666
8.21.3.1;3.1 Characteristics of CEC-1LA Cell Line;666
8.21.4;References;669
8.22;Cryopreservative Solution Using Sericin;670
8.22.1;1 Introduction;670
8.22.2;2 Materials and Methods;670
8.22.3;3 Results;670
8.22.3.1;3.1 Influence of Autoclave on Sericin Solution;670
8.22.3.2;3.2 Influence of Autoclave on DMSO Solution;671
8.22.4;Reference;673
8.23;Fructan as a Novel Effective Factor for Mammalian Cell Culture;674
8.23.1;1 Introduction;674
8.23.2;2 Materials and Methods;675
8.23.3;3 Results;675
8.23.4;References;677
8.24;Online Determination of Oxygen Uptake and Carbon Dioxide Production Rates in Mammalian Cell Culture Using Mass Spectrometry;678
8.24.1;1 Introduction;679
8.24.2;2 Materials and Methods;679
8.24.3;3 Results and Discussion;680
8.24.4;4 Conclusion;681
8.24.5;References;682
8.25;Optimisation of mAb Concentration in Microcarrier Based Perfusion Compared to Batch/Fed-Batch Cultivation;683
8.25.1;1 Cell Cultivation and Reactor Setups;683
8.25.2;2 Results;684
8.25.3;3 Conclusion;686
8.26;Characterization of the Novel Human AGE1hn Cell Line for Production of Recombinant Proteins;687
8.26.1;1 Materials and Methods;687
8.26.2;2 Results;688
8.26.3;3 Conclusions;690
8.27;Rapid Selection of Optimal Formulations for Divergent Clones Through Screening Chinese Hamster Ovary Media Library;692
8.27.1;1 Introduction;692
8.27.2;2 Materials and Methods;693
8.27.2.1;2.1 Cell Lines and Media;693
8.27.2.2;2.2 Productivity Assay;694
8.27.3;3 Results;694
8.27.4;4 Conclusions;695
8.28;Development of a Vaccine Candidate Against Heartwater;696
8.28.1;1 Introduction;697
8.28.2;2 Materials and Methods;697
8.28.3;3 Results and Discussion;698
8.28.3.1;3.1 Mass Production of Endothelial Cells;698
8.28.3.2;3.2 Ehrlichia ruminantium Production Under Stirring Conditions;698
8.28.3.2.1;3.2.1 E. ruminantium Life Cycle;698
8.28.3.2.2;3.2.2 Production of E. ruminantium ;699
8.28.3.3;3.3 E. ruminantium Purification;700
8.28.3.4;3.4 Ehrlichia ruminantium Storage and Vaccine Efficacy;701
8.28.3.5;References;702
8.29;Animal Component Free T-Cell Culture;704
8.29.1;1 Introduction;704
8.29.2;2 Materials and Methods;705
8.29.3;3 Results;705
8.29.4;4 Discussion;709
8.29.5;References;709
8.30;Characterization of Cholesterol-Independent GS-NS/0 Recombinant Antibody Cell Lines;710
8.30.1;1 Introduction;710
8.30.2;2 Methods;711
8.30.3;3 Results;711
8.30.3.1;3.1 Cell Growth;711
8.30.3.2;3.2 Titers and qP;711
8.30.3.3;3.3 Product Quality;713
8.30.4;4 Conclusions;714
8.30.5;References;714
8.31;Development of a Fed-Batch Process for the Production of a Recombinant Protein X in CHO-GS System Case Study from the Cell to Reactor Process Ready for Pilot Scale Cultivation;715
8.31.1;1 Results;715
8.31.2;2 Discussion and Conclusion;716
8.32;Scaffolds for Articular Joint Tissue Engineering;718
8.32.1;1 Introduction;718
8.32.2;2 Materials and Methods;719
8.32.3;3 Results and Discussion;720
8.32.3.1;3.1 Scaffold Selection and Characterization;720
8.32.3.2;3.2 Colonization;721
8.32.3.3;3.3 Cell Proliferation and Material Degradation;722
8.32.3.4;3.4 Genetic Profile;723
8.32.4;4 Conclusion;723
8.32.5;References;724
8.33;Effect of Tunisian Aromatic Plant Extracts on Melanogenesis;725
8.33.1;1 Materials and Methods;726
8.33.1.1;1.1 Measurement of Melanin Content and Cell Viability;726
8.33.1.2;1.2 Western Blotting;726
8.33.2;2 Results and Discussion;726
8.33.2.1;2.1 C. spinosa and E. multiflora Extract have Stimulative Effect on Melanogenesis;726
8.33.2.2;2.2 T. hirsuta Extract have Inhibitive Effect on Melanogenesis;727
8.33.3;References;728
8.34;Effects of Capsaicin on Energy Metabolism by Human Intestinal Epithelial Cell Line Caco-2;729
8.34.1;1 Introduction;729
8.34.2;2 Results and Discussion;730
8.34.3;References;732
8.35;Human A1AT Production Propagating a Newly Developed Human Cell Line in a Novel Disposable Perfusion Bioreactor;733
8.35.1;1 Introduction;733
8.35.2;2 The Three Columns of the Process: Protein, Cell Line, Bioreactor;734
8.35.3;3 Process Data of a 31-Day Production Process of A1AT with AGE1.hn in the G-System;735
8.35.4;4 Summary and Conclusions;737
8.36;Characterization of Diffusion and Flow Relations in the Novel Membrane Based Perfusion Bioreactor;738
8.36.1;1 Introduction;738
8.36.2;2 Design and Working Principle of the Membrane Based Bioreactor;739
8.36.3;3 Permeability of the Membrane;740
8.36.4;4 Mixing of the Perfusion Flow into the Medium of the Membrane Surrounding Supply Space;741
8.36.5;5 Summary and Conclusions;742
8.37;Protective Effect of Di-O-Caffeoylquinic Acid on Human-Derived Neurotypic SH-SY5Y Cells Against Alzheimer's Disease Amyloid-Beta-Induced Toxicity;743
8.38;Flow Through Ceramic Foams A Future Cell Culture Challenge;746
8.38.1;1 Introduction;746
8.38.2;2 Experimental Procedures;747
8.38.3;3 Results;749
8.38.4;4 Conclusion;751
8.38.5;References;751
8.39;Measles Virus Production in MRC-5 Cells Grown on Microcarriers in a Stirred Bioreactor;752
8.39.1;1 Material and Methods;753
8.39.2;2 Results;753
8.39.2.1;2.1 Measles Virus Production in Spinner Flask Cultures;753
8.39.2.2;2.2 Bioreactor Cultures;754
8.39.2.2.1;2.2.1 BelloCell500 Culture;754
8.39.2.2.2;2.2.2 2-L Stirred Bioreactor Culture;755
8.39.3;References;755
8.40;A New System for the Enrichment of Cell Subclones Secreting High Levels of IgG Using Magnetic Cell Sorting (MACS Technology);757
8.40.1;1 Introduction;757
8.40.2;2 Material and Methods;758
8.40.2.1;2.1 Separation of Target Cells from Heterogeneous Populations Using MACS ® Technology;758
8.40.2.2;2.2 Subcloning;758
8.40.2.3;2.3 Specific Production Rate (SPR) Determination of Subclones;759
8.40.3;3 Results;759
8.40.3.1;3.1 Analysis of the Effect of Upstream Antibody-Producing Hybridoma Cell Enrichment on the SPR Diversification Pattern Within Cell Populations;759
8.40.3.2;3.2 Analysis of the Effect of Sequential Separation Steps on the SPRs of Different Hybridoma Populations;760
8.40.4;4 Conclusions;761
8.41;Soy Hydrolysate Optimization for Cell Culture Applications;762
8.41.1;1 Introduction;763
8.41.2;2 Materials and Methods;763
8.41.2.1;2.1 Hydrolysate Manufacturing;763
8.41.2.2;2.2 Cell Culture;763
8.41.2.3;2.3 Chemical Composition;765
8.41.3;3 Results and Discussion;765
8.41.3.1;3.1 Cell Culture;765
8.41.4;4 Conclusions;768
8.42;The Effect of Bioreactor pH and Temperature on Protein Glycosylation in Perfusion Cultures of Mammalian Cells;769
8.42.1;1 Introduction;769
8.42.2;2 Materials and Methods;770
8.42.3;3 Results and Discussion;770
8.42.4;Reference;772
8.43;Evaluation of Cell Growth Characteristics on Chitosan-Alginate Membranes to Assess Their Potential Application on Highly Exuding Skin Lesions and In Vivo Evaluation in Wounded Cat;773
8.43.1;1 Introduction;773
8.43.2;2 Material and Methods;774
8.43.2.1;2.1 Membranes Production;774
8.43.2.2;2.2 In Vitro and In Vivo tests;775
8.43.3;3 Results;775
8.43.4;4 Conclusions;777
8.43.5;References;778
8.44;Vaccine Production Utilizing the Potential of Microcarriers in Disposable Bioreactor;779
8.44.1;1 Introduction;780
8.44.2;2 Materials and Methods;780
8.44.3;3 Results;780
8.44.3.1;3.1 Effect of Pluronic F-68 on Vero Cell Growth in the Wave Bioreactor;780
8.44.3.2;3.2 Reproducibility of Wave Cultures and Comparison with Stirred Tank Bioreactor;782
8.44.3.3;3.3 Scale-Up to the 20 L Wave Bioreactor;783
8.44.3.4;3.4 Animal Component Free;783
8.44.3.5;3.5 Polio Virus Production;784
8.44.4;4 Conclusions;785
8.44.5;References;785
8.45;Characterization of an Anti-Idiotypic Antibody Blocking the Capacity of the HIV-1 Specific nMAb 2F5;786
8.45.1;1 Introduction;786
8.45.2;2 Expression of Ab2/3H6 Variants;786
8.45.3;3 Characterisation of Ab2/3H6 Variants;787
8.45.4;4 Conclusions;788
8.45.5;References;789
8.46;Cultivation of PER.C6 Cells in the Novel CELL-TainerTM High-Performance Disposable Bioreactor;790
8.46.1;1 Introduction;790
8.46.2;2 Materials and Methods;790
8.46.3;3 Results and Discussion;791
8.46.4;4 Conclusions;791
8.47;Scale-Up of a PER.C6 Fed-Batch Process in 50 and 250 L Hyclone Single Use Bioreactors Compared to 50 and 250 L Stainless Steel Bioreactors;792
8.47.1;1 Introduction;792
8.47.2;2 Materials and Methods;792
8.47.3;3 Results and Discussion;793
8.47.4;4 Conclusions;793
8.48;Capacitance Sensor as a Robust Tool for Cell Culture Monitoring in Process Development and Manufacturing;794
8.48.1;1 Introduction;794
8.48.2;2 Theory;795
8.48.3;3 Materials and Methods;796
8.48.4;4 Results;796
8.48.5;5 Conclusions;800
8.48.6;Reference;800
8.49;Effect of Different Cell Culture Medium Surfactants on Cell Growth and Viability;801
8.49.1;1 Introduction;801
8.49.2;2 Material and Methods;802
8.49.2.1;2.1 Rationale for Chosen Surfactant Concentrations;802
8.49.3;3 Results;802
8.49.4;4 Conclusion and Next Step;803
8.49.5;References;804
8.50;Conventional Stirred Bioreactor Control System for Monitoring and Controlling pH and DO in a Wave Bioreactor;805
8.50.1;1 Materials and Methods;805
8.50.1.1;1.1 Cell Cultivation;805
8.50.1.2;1.2 pH and DO Analysis;806
8.50.2;2 Results;807
8.50.2.1;2.1 Measurement in Cell Free Medium;807
8.50.2.2;2.2 Measurement During Cultivation;807
8.50.3;3 Discussion and Conclusion;809
8.51;On-Line Monitoring of Vero Cells Cultures During the Growth and Rabies Virus Process Using Biomass Spectrometer;811
8.51.1;1 Material and Methods;812
8.51.2;2 Results;812
8.51.3;References;814
8.52;Inducing of Human IgE Antibodies by In Vitro Immunization;815
8.52.1;1 Introduction;815
8.52.2;2 Methods;816
8.52.3;3 Results and Discussion;816
8.52.3.1;3.1 Establishing Human In Vitro IgE Antibody-Inducing System;816
8.52.3.2;3.2 Effects of the IgE Antibody-Inducing System on Human Plasma;816
8.52.3.3;3.3 Effects of Food Ingredients on the Induction of IgE Antibodies Against Cedar Pollens;818
8.52.4;References;818
8.53;Oxygen Uptake Rate (OUR) Estimation in High Density Mammalian Cell Perfusion Cultures;819
8.53.1;1 Introduction;819
8.53.2;2 Methods;820
8.53.2.1;2.1 Global Mass Balance;820
8.53.2.2;2.2 Dynamic Method;821
8.53.3;3 Results;821
8.53.4;References;823
8.54;Use of Yeast Derived Nutrients for Cell Culture in Serum-Free Media;824
8.54.1;1 Introduction;824
8.54.2;2 Materials and Methods;825
8.54.3;3 Results;825
8.54.3.1;3.1 YDN Screening in Microplates;825
8.54.3.2;3.2 Growth Kinetics and Metabolism in Spinners;826
8.54.4;4 Conclusion;827
8.54.5;References;827
8.55;A Novel Approach to the Production of Plant-Derived Hydrolysates Yields Medium Supplements with Enhanced Performance in Cell Culture Systems;828
8.55.1;1 Introduction;828
8.55.2;2 A Brief Summary of the Novel Process;829
8.55.3;3 Materials and Methods;829
8.55.3.1;3.1 CHO-K1 Cell Culture;829
8.55.3.2;3.2 Pilot Plant Lots of UltraPep Soy;829
8.55.4;4 Results;830
8.55.5;5 Summary;833
8.56;Monitoring the Cell Size Distribution of Mammalian Cell Cultures Using On-Line Capacitance Measurements;834
8.56.1;1 Introduction;835
8.56.2;2 Material and Methods;835
8.56.3;3 Results;836
8.56.4;4 Conclusions;839
8.56.5;References;840
8.57;Biosimilarity of Recombinant Human EPO Products from CHO Cell Lines: A Carbohydrate Structural View;841
8.57.1;1 Introduction;841
8.57.2;2 Material and Methods;842
8.57.2.1;2.1 EPO Preparations;842
8.57.2.2;2.2 Release of Sialic Acids and N-Linked Oligosaccharides;842
8.57.2.3;2.3 Mass Spectrometric Analysis;842
8.57.2.4;2.4 Purification of Released N-Linked Oligosaccharides by Anion Exchange Chromatography;842
8.57.3;3 Results and Discussion;843
8.57.4;4 Conclusions;845
8.57.5;References;845
8.58;Quantitative N-Glycan Mapping of Glycoprotein Therapeutics by HPAEC-PAD: Glycosylation Characteristics of Different Recombinant Human EPO Products;846
8.58.1;1 Introduction;847
8.58.2;2 Results;847
8.58.3;3 Conclusion;847
8.58.4;References;850




