Nokeri | Data Science Revealed | Buch | 978-1-4842-6869-8 | sack.de

Buch, Englisch, 252 Seiten, Format (B × H): 178 mm x 254 mm, Gewicht: 518 g

Nokeri

Data Science Revealed

With Feature Engineering, Data Visualization, Pipeline Development, and Hyperparameter Tuning
1. Auflage 2021
ISBN: 978-1-4842-6869-8
Verlag: Apress

With Feature Engineering, Data Visualization, Pipeline Development, and Hyperparameter Tuning

Buch, Englisch, 252 Seiten, Format (B × H): 178 mm x 254 mm, Gewicht: 518 g

ISBN: 978-1-4842-6869-8
Verlag: Apress


Get insight into data science techniques such as data engineering and visualization, statistical modeling, machine learning, and deep learning. This book teaches you how to select variables, optimize hyper parameters, develop pipelines, and train, test, and validate machine and deep learning models. Each chapter includes a set of examples allowing you to understand the concepts, assumptions, and procedures behind each model.

The book covers parametric methods or linear models that combat under- or over-fitting using techniques such as Lasso and Ridge. It includes complex regression analysis with time series smoothing, decomposition, and forecasting. It takes a fresh look at non-parametric models for binary classification (logistic regression analysis) and ensemble methods such as decision trees, support vector machines, and naive Bayes. It covers the most popular non-parametric method for time-event data (the Kaplan-Meier estimator). It also covers ways of solving classification problems using artificial neural networks such as restricted Boltzmann machines, multi-layer perceptrons, and deep belief networks. The book discusses unsupervised learning clustering techniques such as the K-means method, agglomerative and Dbscan approaches, and dimension reduction techniques such as Feature Importance, Principal Component Analysis, and Linear Discriminant Analysis. And it introduces driverless artificial intelligence using H2O.

After reading this book, you will be able to develop, test, validate, and optimize statistical machine learning and deep learning models, and engineer, visualize, and interpret sets of data.



What You Will Learn
  • Design, develop, train, and validate machine learning and deep learning models
  • Find optimal hyper parameters for superior model performance
  • Improve model performance using techniques such as dimension reduction and regularization
  • Extract meaningful insights for decision making using data visualization



Who This Book Is ForBeginning and intermediate level data scientists and machine learning engineers

Nokeri Data Science Revealed jetzt bestellen!

Zielgruppe


Professional/practitioner


Autoren/Hrsg.


Weitere Infos & Material


Chapter 1: An Introduction to Simple Linear Regression Analysis.- Chapter 2: Advanced Parametric Methods.- Chapter 3: Time Series Analysis.- Chapter 4: High-Quality Time Series Analysis.- Chapter 5: Logistic Regression Analysis.- Chapter 6: Dimension Reduction and Multivariate Analysis Using Linear Discriminant Analysis.- Chapter 7: Finding Hyperplanes Using Support Vectors.- Chapter 8: Classification Using Decision Trees.- Chapter 9: Back to the Classics.- Chapter 10: Cluster Analysis.- Chapter 11: Survival Analysis.- Chapter 12: Neural Networks.- Chapter 13: Machine Learning Using H2O.


Tsheop Chris Nokeri harnesses advanced analytics and artificial intelligence to foster innovation and optimize business performance. He has delivered complex solutions to companies in the mining, petroleum, and manufacturing industries. He completed a bachelor’s degree in information management and graduated with an honors degree in business science at the University of the Witwatersrand on a TATA Prestigious Scholarship and a Wits Postgraduate Merit Award. He also was awarded the Oxford University Press Prize.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.