E-Book, Englisch, 239 Seiten, eBook
Niu / Chen Smart Big Data in Digital Agriculture Applications
1. Auflage 2024
ISBN: 978-3-031-52645-9
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark
Acquisition, Advanced Analytics, and Plant Physiology-informed Artificial Intelligence
E-Book, Englisch, 239 Seiten, eBook
Reihe: Agriculture Automation and Control
ISBN: 978-3-031-52645-9
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark
This book details the foundations of the plant physiology-informed machine learning (PPIML) and the principle of tail matching (POTM) framework. It is the 9th title of the "Agriculture Automation and Control" book series published by Springer.
Zielgruppe
Research
Autoren/Hrsg.
Weitere Infos & Material
Chapter 1: Introduction
Chapter 2: Fundamentals of Big Data
Chapter 3: Fundamentals of Machine Learning
Chapter 4: Smart analytics of Big Data in Precision Agriculture
Chapter 5: A Low-cost Proximate Sensing Method for Early Detection of Nematodes in Walnut Using Machine Learning Algorithms
Chapter 6: Reliable Tree-level Evapotranspiration Estimation of Pomegranate Trees Using Lysimeter and UAV Multispectral Imagery
Chapter 7: Individual Tree-level Water Status Inference Using High-resolution UAV Thermal Imagery and Complexity-informed Machine Learning
Chapter 8: Scale-aware Pomegranate Yield Prediction Using UAV Imagery and Machine Learning
Chapter 9: Intelligent Bugs Mapping and Wiping (iBMW): An Affordable Robot-driven Robot for Farmers
Chapter 10: A Non-invasive Stem Water Potential Monitoring Method Using Proximate Sensor and Machine Learning Classification Algorithms
Chapter 11: A Low-cost Soil Moisture Monitoring Method by Using Walabot and Machine Learning AlgorithmsChapter 12: Conclusion and Future Research




