E-Book, Englisch, 293 Seiten, Web PDF
Reihe: IFAC Symposia Series
Nishimura Automatic Control in Aerospace 1989
1. Auflage 2014
ISBN: 978-1-4832-9898-6
Verlag: Elsevier Science & Techn.
Format: PDF
Kopierschutz: 1 - PDF Watermark
Selected Papers from the IFAC Symposium, Tsukuba, Japan, 17-21 July 1989
E-Book, Englisch, 293 Seiten, Web PDF
Reihe: IFAC Symposia Series
ISBN: 978-1-4832-9898-6
Verlag: Elsevier Science & Techn.
Format: PDF
Kopierschutz: 1 - PDF Watermark
The papers presented at the Symposium covered the areas in aerospace technology where automatic control plays a vital role. These included navigation and guidance, space robotics, flight management systems and satellite orbital control systems. The information provided reflects the recent developments and technical advances in the application of automatic control in space technology.
Autoren/Hrsg.
Weitere Infos & Material
1;Front Cover;1
2;Automatic Control in Aerospace;4
3;Copyright Page;5
4;Table of Contents;8
5;PART I: PLENARY SESSION;12
5.1;Chapter 1. NASDA's Long-range Plan and Automatic Control;12
5.1.1;1. INTRODUCTION;12
5.1.2;2. SPACE TRANSPORTATION SYSTEM;13
5.1.3;3. SPACE UTILIZATION SYSTEM;15
5.1.4;4. DEVELOPMENT OF SPACE INFRASTRUCTURE AND EVOLUTION OF MANNED SPACE ACTIVITIES;22
5.1.5;5. DEVELOPMENT AND UTILIZATION OF THE MOON AND PLANETS;26
5.1.6;6. CONCLUSIONS;26
5.1.7;7. REFERENCES;26
5.2;Chapter 2. The NASA Telerobotics Research Program ;28
5.2.1;INTRODUCTION;28
5.2.2;APPLICATIONS OF SPACE TELEROBOTICS;29
5.2.3;NASA's SUPPORTING RESEARCH PROGRAM;30
5.2.4;CONCLUSIONS AND OBSERVATIONS;34
5.2.5;GLOSSARY;35
5.2.6;ACKNOWLEDGEMENT;35
5.2.7;REFERENCES;35
6;PART II: NAVIGATION, ATTITUDE DETERMINATION AND POINTING SYSTEMS;38
6.1;Chapter 3. Dynamic Evaluation for the DRTS User Spacecrafts' Antenna Pointing System ;38
6.1.1;INTRODUCTION;38
6.1.2;ANTENNA POINTING SYSTEM;38
6.1.3;ACTUATOR MODELING;39
6.1.4;DYNAMIC TEST;41
6.1.5;CONCLUSIONS;43
6.1.6;ACKNOWLEDGMENT;43
6.1.7;REFERENCES;43
6.2;Chapter 4. Control Design of an Antenna Pointing Control System with Large On-board Reflectors;44
6.2.1;NOMENCLATURE;44
6.2.2;INTRODUCTION;44
6.2.3;SYSTEM REQUIREMENTS;44
6.2.4;SYSTEM CONFIGURATION;45
6.2.5;DYNAMICS;45
6.2.6;CONTROL DESIGN;46
6.2.7;CONCLUSIONS;48
6.2.8;ACKNOWLEDGEMENTS;48
6.2.9;REFERENCES;48
6.3;Chapter 5. The Theoretical and Experimental Validation of the GPS–INS-STAR Hybrid Navigation System Concept ;50
6.3.1;INTRODUCTION;50
6.3.2;SYSTEM DESCRIPTION;50
6.3.3;DESCRIPTION OF EXPERIMENT AND ITS RESULTS;51
6.3.4;DISCUSSIONS BY THEORETICAL APPROACH;53
6.3.5;CONCLUSIONS;55
6.3.6;REFERENCES;55
6.4;Chapter 6. Kalman Filter Based Range Estimation for Autonomous Navigation using imaging sensors;56
6.4.1;1 Introduction;56
6.4.2;2 Image Geometry;56
6.4.3;3 Optical Flow Computation;57
6.4.4;4 Recursive Range Estimation;59
6.4.5;5 Numerical Results;59
6.4.6;6 Summary;61
6.4.7;References;61
6.5;Chapter 7. A Star Pattern Recognition Algorithm for Autonomous Attitude Determination;62
6.5.1;INTRODUCTION;62
6.5.2;PREVIOUS RELATED RESULTS;63
6.5.3;RECOGNITION ALGORITHM;63
6.5.4;SUCCESS RATE OF RECOGNITION ALGORITHM;66
6.5.5;COMPUTATIONAL REQUIREMENTS FOR FAST;68
6.5.6;CONCLUSIONS;69
6.5.7;ACKNOWLEDGEMENTS;69
6.5.8;REFERENCES;69
6.6;Chapter 8. New Concept for Autonomous Rendezvous Approach Navigation and Guidance System using Only Target Image Information;70
6.6.1;INTRODUCTION;70
6.6.2;SYSTEM DESCRIPTION;71
6.6.3;FUNDAMENTAL EQUATIONS;71
6.6.4;OBSERVABILITY ANALYSIS;72
6.6.5;NAVIGATION SIMULATION;73
6.6.6;VISUAL SENSOR IMPLEMENTATION;74
6.6.7;APPROACH SOE AND GUIDANCE;74
6.6.8;CONCLUSIONS;75
6.6.9;REFERENCES;75
7;PART III: SATELLITE ATTITUDE AND ORBITAL CONTROL SYSTEMS I;76
7.1;Chapter 9. Attitude Control System for Engineering Test Satellite–VI;76
7.1.1;1. Introduction;76
7.1.2;2. Spacecraft Configuration;76
7.1.3;3. Requirements;76
7.1.4;4. Attitude Control System Configuration;77
7.1.5;5. Attitude Control Design;77
7.1.6;6. Simulation Results;79
7.1.7;7. Conclusion;79
7.1.8;ACKNOWLEDGMENT;79
7.1.9;REFERENCE;79
7.2;Chapter 10. Attitude and Orbit Control Subsystem for MOS–1;86
7.2.1;INTRODUCTION;86
7.2.2;OUTLINE OF THE AOCS;86
7.2.3;REGULATOR DESIGN;87
7.2.4;FLIGHT EXPERIENCE;89
7.2.5;CONCLUSIONS;91
7.2.6;ACKNOWLEDGEMENT;91
7.2.7;REFERENCES;91
7.3;Chapter 11. Attitude and Orbit Control Subsystem for ERS–1 and its Subsystem Test;92
7.3.1;INTRODUCTION;92
7.3.2;THRUSTER CONTROL;93
7.3.3;NORMAL MODE CONTROL;95
7.3.4;SUBSYSTEM TEST;96
7.3.5;CONCLUSION;97
7.3.6;REFERENCES;97
7.4;Chapter 12. The Attitude and Orbit Control Subsystem of the EUTLSAT II Spacecraft;98
7.4.1;1. Introduction;98
7.4.2;2. Spacecraft configuration:;99
7.4.3;3. Mission Sequence;99
7.4.4;4. ADCS Equipment Description;100
7.4.5;5. ADCE, Central Part of the ADCS;101
7.4.6;6. ADCS Operational Modes:;104
7.4.7;7. Control Loop Configuration, Design and Analysis;106
7.4.8;8. Subsystem Qualification and Test :;110
7.4.9;9. Conclusion;111
7.4.10;10. References;111
8;PART IV: SPACE ROBOTICS AND MANIPULATORS;122
8.1;Chapter 13. Autonomous Navigation and Control of a Mars Rover;122
8.1.1;1. Introduction;122
8.1.2;2. Semiautononious Navigation Scenario;122
8.1.3;3. Sensing and Perception;122
8.1.4;4. Path Planning & Execution Monitoring;124
8.1.5;5. Implementation and Testing;125
8.1.6;6 Conclusions and Results;125
8.1.7;References;125
8.2;Chapter 14. Simulation System for a Space Robot Using 6 Axis Servos;126
8.2.1;INTRODUCTION;126
8.2.2;SYSTEM DESCRIPTION;127
8.2.3;SIMULATION ALGORITHM;128
8.2.4;EVALUATION TEST;129
8.2.5;CONCLUSION;130
8.2.6;REFERENCES;131
8.2.7;APPENDIX;131
8.3;Chapter 15. Theoretical and Experimental Study on In-Orbit Capture Operation with Satellite Mounted Manipulator;132
8.3.1;INTRODUCTION;132
8.3.2;THEORETICAL STUDY ON MODELING AND CONTROL OF SPACE ROBOTIC SYSTEMS;132
8.3.3;EXPERIMENTAL MODEL;133
8.3.4;EXPERIMENTAL RESULTS;135
8.3.5;CONCLUSIONS;136
8.3.6;APPENDIX;136
8.3.7;REFERENCES;137
8.4;Chapter 16. Simulation and Control of Space Manipulators Bearing Complex Payloads;138
8.4.1;INTRODUCTION;138
8.4.2;PAYLOADS TO BE HANDLED;138
8.4.3;THE SIMULATON PROBLEM;139
8.4.4;THE CONTROL PROBLEM;141
8.4.5;CONCLUSION;143
8.4.6;REFERENCES;143
8.5;Chapter 17. Experimental Implementation of a Nonlinear Estimator in the Control of Flexible Joint Manipulators;144
8.5.1;INTRODUCTION;144
8.5.2;EXPERIMENTAL MANIPULATOR;144
8.5.3;EARLY RESULTS;145
8.5.4;RATIONALE;145
8.5.5;ESTIMATOR DESIGN;145
8.5.6;EXPERIMENTAL RESULTS;148
8.5.7;CONCLUSIONS;148
8.5.8;ACKNOWLEDGEMENTS;149
8.5.9;REFERENCES;149
8.5.10;APPENDIX I: MANIPULATOR MODEL;149
8.5.11;APPENDIX II: ROBUSTNESS ANALYSIS;151
9;PART V: INSTRUMENTS AND AERONAUTICAL SYSTEMS;152
9.1;Chapter 18. A Review of Space Guidance and Control Equipment;152
9.1.1;INTRODUCTION;152
9.1.2;SENSORS;152
9.1.3;ACTUATION;154
9.1.4;CONCLUSIONS;156
9.1.5;REFERENCES;156
9.2;Chapter 19. Noninteracting Control of Dynamically Tuned Dry Gryo and its Application to Measurement of Two-axis Angular Accelerations;158
9.2.1;NOMENCLATURE;158
9.2.2;INTRODUCTION;158
9.2.3;USE OF TDG IN ANALOG REBALANCE LOOP;159
9.2.4;DERIVATION OF ANALYTICAL SOLUTION FOR IMPROVED RCC;160
9.2.5;DESIGN AND MANUFACTURE OF IMPROVED RCC;160
9.2.6;EXPERIMENTAL RESULTS;161
9.2.7;CONCLUSIONS;162
9.2.8;REFERENCES;163
9.3;Chapter 20. Controller Designs of a Gust Load Alleviation System for an Elastic Rectangular Wing;164
9.3.1;INTRODUCTION;164
9.3.2;ROC DESIGN BY THE GHR METHOD;164
9.3.3;ROC DESIGN BY THE NFA METHOD;165
9.3.4;APPLICATION TO A GUST LOAD ALLEVIATION SYSTEM;166
9.3.5;CONCLUDING REMARKS;169
9.3.6;ACKNOWLEDGEMENT;169
9.3.7;REFERENCES;169
9.4;Chapter 21. Study on Integrated Cockpit Display using Flight Simulator;170
9.4.1;INTRODUCTION;170
9.4.2;FLIGHT SIMULATION FACILITY;170
9.4.3;COCKPIT DISPLAY RESEARCH TOOL;171
9.4.4;FLIGHT SIMULATION TEST;172
9.4.5;TEST RESULTS;173
9.4.6;CONCLUDING REMARKS;174
9.4.7;REFERENCE;174
9.5;Chapter 22. Robust Control for Large Space Structures: Spillover Suppression by Frequency-shaped Optimal Regulator;176
9.5.1;INTRODUCTION;176
9.5.2;FREQUENCY-SHAPED LQ REGULATOR;176
9.5.3;APPLICATION TO LSS CONTROL;178
9.5.4;EXAMPLE;178
9.5.5;CONCLUSION;180
9.5.6;REFERENCES;180
9.5.7;APPENDICES;181
9.6;Chapter 23. Active Stabilization of a Large Flexible Antenna Feed Support Structure;182
9.6.1;INTRODUCTION;182
9.6.2;FLEXIBLE STRUCTURE MODEL;182
9.6.3;CONTROLLER DESIGN;183
9.6.4;CONTROLLER PERFORMANCE;183
9.6.5;EFFECT OF STRIP LOCATION;183
9.6.6;CONCLUSION;185
9.6.7;REFERENCES;185
9.6.8;APPENDIX;186
9.6.9;PROBLEM STATEMENT;186
9.6.10;OBJECTIVE;186
9.6.11;REGULATOR DESIGN WITH PRESCRIBED STABILITY;186
9.6.12;LEMMA;186
9.6.13;SHIEH'S ALGORITHM FOR POLE PLACEMENT;187
9.7;Chapter 24. The Development of an Integrated Experiment to Study the Controls/Structures Interaction Problem in Large Optical Systems;188
9.7.1;INTRODUCTION;188
9.7.2;CONTROL OF LARGE SEGMENTED REFLECTORS;189
9.7.3;DESIGN CRITERIA FOR A LABORATORY TEST BED;189
9.7.4;FEATURES OF THE ASCIE TEST BED;189
9.7.5;ASCIE SYSTEM OVER VIEW;191
9.7.6;ASCIE STRUCTURAL DESIGN;191
9.7.7;SEGMENT CONTROL SYSTEM;193
9.7.8;CONTROLS / STRUCTURES INTERACTION;194
9.7.9;PRELIMINARY EXPERIMENTAL RESULTS;194
9.7.10;CONCLUSIONS;195
9.7.11;REFERENCES;195
9.8;Chapter 25. Control of an Orbiting Platform Supported Tethered Satellite System;196
9.8.1;INTRODUCTION;196
9.8.2;OUTLINE OF THE FORMULATION;196
9.8.3;CONTROL;198
9.8.4;RESULTS AND DISCUSSION;200
9.8.5;CONCLUSIONS;201
9.8.6;REFERENCES;201
10;PART VI: LAUNCH VEHICLES AND INTERPLANETARY VEHICLES;202
10.1;Chapter 26. Hardware-in-the-loop Simulation for TR-I Rocket Roll Control System;202
10.1.1;INTRODUCTION;202
10.1.2;HARDWARE-IN-THE-LOOP SIMULATION;202
10.1.3;CONCLUSION;203
10.2;Chapter 27. Robust Techniques Application for Attitude Control of a Launcher During Atmospheric Flight;208
10.2.1;INTRODUCTION;208
10.2.2;MODEL OF THE LAUNCHER;208
10.2.3;MONOAXIS ATTITUDE CONTROL SYNTHESIS;209
10.2.4;COUPLING INFLUENCE ON LAUNCHER STABILITY;209
10.2.5;KALMAN FILTER EFFECT ON GLOBAL ROBUSTNESS.;210
10.2.6;INFLUENCE OF QUADRATO CRITERION;211
10.2.7;OUTPUT AND INPUT ROBUSTNESS;211
10.2.8;CONCLUSION;212
10.2.9;REFERENCES;212
10.3;Chapter 28. Optimal Thruster Configurations for the GP-B Spacecraft;214
10.3.1;1 Introduction;214
10.3.2;2 Thrust Control;214
10.3.3;3 Least Authority;216
10.3.4;4 Optimal Thruster Configurations;217
10.3.5;5 Envelope of Least Authority;217
10.3.6;6 Thruster Configurations;218
10.3.7;7 Conclusions;218
10.3.8;8 Acknowledgment;219
10.3.9;9 Appendix: Vector Norms;219
10.3.10;References;219
10.4;Chapter 29. Integrated Flight/Propulsion Control: Requirements and Issues;220
10.4.1;INTRODUCTION;220
10.4.2;THE CONTROL PROBLEM;222
10.4.3;CONCLUSION;225
10.4.4;REFERENCES;225
10.5;Chapter 30. The Cassini Titan Probe's Adaptive Descent Control;226
10.5.1;INTRODUCTION;226
10.5.2;PROBE MISSION OVERVIEW;227
10.5.3;DESCENT SYSTEM DESIGN;228
10.5.4;UNCERTAINTIES AFFECTING THE DESCENT;230
10.5.5;REQUIREMENTS FOR AUTONOMOUS PROBE CONTROL;230
10.5.6;EFFECTS OF DESCENT CONTROL ACTIONS;231
10.5.7;ADAPTIVE DESCENT CONTROL;231
10.5.8;CONCLUSIONS;233
10.5.9;ACKNOWLEDGEMENTS;233
10.5.10;REFERENCES;233
10.6;Chapter 31. A Continuous Proportional Low-Thrust Propulsion System;234
10.6.1;INTRODUCTION;234
10.6.2;PROPORTIONAL THRUSTER DESIGN;234
10.6.3;TESTING OF THE HELIUM PROPORTIONAL THRUSTER;235
10.6.4;MODELING OF HELIUM FLOW THROUGH THERES TRICTOR AND NOZZLE;236
10.6.5;CONCLUSION;238
10.6.6;ACKNOWLEDGMENTS;238
10.6.7;REFERENCES;238
10.7;Chapter 32. A Novel Dynamic Programming Algorithm and its Application to Optimal Low-Thrust Tajectory Generation for Space Mission;242
10.7.1;INTRODUCTION;242
10.7.2;GENERAL CONTROL PROBLEM;242
10.7.3;DYNAMIC PROGRAMMING;242
10.7.4;INVENTIVE NUMERICAL TECHNIQUES;243
10.7.5;NUMERICAL EXAMPLES;245
10.7.6;AN APPLICATION TO OPTIMAL LOW-THRUST TRAJECTORY GENERATION;246
10.7.7;CONCLUSIONS;247
10.7.8;AGKNOWLEDGMENT;247
10.7.9;REFERENGES;247
11;PART VII: SATELLITE ATTITUDE AND ORBITAL CONTROL SYSTEMS II;248
11.1;Chapter 33. The Hybrid Attitude Control System for the Geosynchronous Satellite;248
11.1.1;INTRODUCTION;248
11.1.2;HYBRID ATTITUDE CONTROL SYSTEM;249
11.1.3;OPTIMIZATION OF HYBRID CONTROL;250
11.1.4;SIMULATION RESULT;252
11.1.5;CONCLUSIONS;252
11.1.6;REFERENCES;253
11.2;Chapter 34. Guidance and Control of Miniature Satellites;254
11.2.1;INTRODUCTION;254
11.2.2;SCALING OF KEY SUBSYSTEMS;255
11.2.3;SMALL SATELLITE ECONOMICS;255
11.2.4;SMALL SATELLITE DEFINITION;255
11.2.5;STABILIZATION METHODS OF SMALL SATELLITES;256
11.2.6;CONCLUSIONS;258
11.2.7;REFERENCES;258
11.3;Chapter 35. Automatic Control of Astronomical Satellites;260
11.3.1;INTRODUCTION;260
11.3.2;IRAS AND ISO : AUTOMATIC RECONFIGURATION AND SAFE MODES;261
11.3.3;FAULT DETECTION TRIGGERS AND RECONFIGURATIONS DURING THE IRAS MISSION;265
11.3.4;CONCLUSIONS;265
11.3.5;REFERENCES;265
11.4;Chapter 36. Novel Concept for Autonomous Controller Design System Utilizing 255Machine Learning Applied to Satellite Attitude Control System Design Problem;266
11.4.1;INTRODUCTION;266
11.4.2;AUTONOMOUS CONTROLLER DESIGN SYSTEM;266
11.4.3;APPLICATION TO MIMO CONTROL PROBLEMS;268
11.4.4;APPLICATION TO SATELLITE ATTITUDE CONTROL SYSTEM DESIGN;269
11.4.5;DISCUSSIONS;271
11.4.6;CONCLUSIONS;271
11.4.7;REFERENCES;271
12;PART VIII: FUTURE VEHICLES;272
12.1;Chapter 37. Navigation and Guidance of the H–II Orbiting Plane;272
12.1.1;INTRODUCTION;272
12.1.2;NAVIGATION;273
12.1.3;GUIDANCE;274
12.1.4;CONCLUSION;275
12.1.5;REFERENCE;276
12.2;Chapter 38. Navigation, Guidance and Control Subsystem of Space Flyer Unit;278
12.2.1;INTRODUCTION;278
12.2.2;SYSTEM OVERVIEW;278
12.2.3;NGC SUBSYSTEM;278
12.2.4;RENDEZVOUS OPERATION;279
12.2.5;SFU RENDEZVOUS SIMULATION;282
12.2.6;PROXIMITY OPERATION;282
12.2.7;ATTITUDE CONTROL DESIGN;283
12.2.8;CONCLUSIONS;283
12.2.9;REFERENCES;283
12.3;Chapter 39. Design of the HERMES Orbital Flight Controller;284
12.3.1;1. INTRODUCTION;284
12.3.2;2. HERMES SYSTEM ASPECTS;285
12.3.3;3. SPACEPLANE CONFIGURATION;285
12.3.4;4. MISSION ASPECTS;286
12.3.5;5. OFC FUNCTIONAL ARCHITECTURE;287
12.3.6;6 . OFC OPERATIONAL ARCHITECTURE;289
12.3.7;7. CONTROL TOPICS;290
12.3.8;8. SIMULATION RESULTS;291
12.3.9;9. CONCLUSION;292
12.3.10;10. ABBREVIATIONS;292
12.3.11;11. REFERENCES;292
13;Author Index;294
14;Keyword Index;296




