Nisar | Sensor-Based Human Activity Recognition for Assistive Health Technologies | Buch | 978-3-8325-5571-9 | sack.de

Buch, Englisch, Band 3, 155 Seiten, PB, Format (B × H): 170 mm x 240 mm

Reihe: Human Data Understanding - Sensors, Models, Knowledge

Nisar

Sensor-Based Human Activity Recognition for Assistive Health Technologies


Erscheinungsjahr 2023
ISBN: 978-3-8325-5571-9
Verlag: Logos

Buch, Englisch, Band 3, 155 Seiten, PB, Format (B × H): 170 mm x 240 mm

Reihe: Human Data Understanding - Sensors, Models, Knowledge

ISBN: 978-3-8325-5571-9
Verlag: Logos


The average age of people has increased due to advances in health sciences, which has led to an increase in the elderly population. This is positive news, but it also raises questions about the quality of independent living for older people. Clinicians use Activities of Daily Living (ADLs) to assess older people's ability to live independently. In recent years, portable computing devices have become more present in our daily lives. Therefore, a software system that can detect ADLs based on sensor data collected from wearable devices is beneficial for detecting health problems and supporting health care. In this context, this book presents several machine learning-based approaches for human activity recognition (HAR) using time-series data collected by wearable sensors in the home environment.

In the first part of the book, machine learning-based approaches for atomic activity recognition are presented, which are relatively simple and short-term activities. In the second part, the algorithms for detecting long-term and complex ADLs are presented. In this part, a two-stage recognition framework is also presented, as well as an online recognition system for continuous monitoring of HAR.

In the third and final part, a novel approach is proposed that not only solves the problem of data scarcity but also improves the performance of HAR by implementing multitask learning-based methods. The proposed approach simultaneously trains the models of short- and long-term activities, regardless of their temporal scale. The results show that the proposed approach improves classification performance compared to single-task learning.

Nisar Sensor-Based Human Activity Recognition for Assistive Health Technologies jetzt bestellen!

Autoren/Hrsg.




Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.