Buch, Englisch, 254 Seiten, Paperback, Format (B × H): 170 mm x 242 mm, Gewicht: 458 g
Reihe: Universitext
Buch, Englisch, 254 Seiten, Paperback, Format (B × H): 170 mm x 242 mm, Gewicht: 458 g
Reihe: Universitext
ISBN: 978-3-540-15281-1
Verlag: Springer Berlin Heidelberg
Zielgruppe
Graduate
Fachgebiete
Weitere Infos & Material
I. Forming geometrical intuition; statement of the main problem.- §1. Formulating the problem.- §2. Spherical geometry.- §3. Geometry on a cylinder.- §4. A world in which right and left are indistinguishable.- §5. A bounded world.- §6. What does it mean to specify a geometry?.- II. The theory of 2-dimensional locally Euclidean geometries.- §7. Locally Euclidean geometries and uniformly discontinuous groups of motions of the plane.- §8. Classification of all uniformly discontinuous groups of motions of the plane.- §9. A new geometry.- §10. Classification of all 2-dimensional locally Euclidean geometries.- III. Generalisations and applications.- §11. 3-dimensional locally Euclidean geometries.- §12. Crystallographic groups and discrete groups.- IV. Geometries on the torus, complex numbers and Lobachevsky geometry.- §13. Similarity of geometries.- §14. Geometries on the torus.- §15. The algebra of similarities: complex numbers.- §16. Lobachevsky geometry.- §17. The Lobachevsky plane, the modular group, the modular figure and geometries on the torus.- Historical remarks.- List of notation.- Additional Literature.