E-Book, Englisch, Band 16, 251 Seiten
Reihe: Radon Series on Computational and Applied MathematicsISSN
Cryptography and Other Applications
E-Book, Englisch, Band 16, 251 Seiten
Reihe: Radon Series on Computational and Applied MathematicsISSN
ISBN: 978-3-11-031791-6
Verlag: De Gruyter
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)
Zielgruppe
Researchers in Mathematics and Computer Science; Academic libraries
Autoren/Hrsg.
Fachgebiete
Weitere Infos & Material
1;Introduction;5
2;Contents;7
3;Generic Newton polygons for curves of given p-rank;13
3.1;1 Introduction;13
3.2;2 Structures in positive characteristic;15
3.2.1;2.1 The p-rank;15
3.2.2;2.2 Newton polygons;16
3.2.3;2.3 Semicontinuity and purity;19
3.2.4;2.4 Notation on stratifications and Newton polygons;20
3.3;3 Stratifications on the moduli space of Abelian varieties;21
3.3.1;3.1 The p-ranks of Abelian varieties;21
3.3.2;3.2 Newton polygons of Abelian varieties;22
3.4;4 The p-rank stratification of the moduli space of stable curves;23
3.4.1;4.1 The moduli space of stable curves;23
3.4.2;4.2 The p-rank stratification of Mg;24
3.4.3;4.3 Connectedness of p-rank strata;25
3.4.4;4.4 Open questions about the p-rank stratification;25
3.5;5 Stratification by Newton polygon;26
3.5.1;5.1 Newton polygons of curves of small genus;26
3.5.2;5.2 Generic Newton polygons;27
3.6;6 Hyperelliptic curves;28
3.7;7 Some conjectures about Newton polygons of curves;30
3.7.1;7.1 Nonexistence philosophy;31
3.7.2;7.2 Supersingular curves;32
3.7.3;7.3 Other nonexistence results;32
4;Good towers of function fields;35
4.1;1 Introduction;35
4.2;2 The Drinfeld modular towers (X0(Pn))n=0 ;37
4.3;3 An example of a classical modular tower;44
4.4;4 A tower obtained from Drinfeldmodules over a different ring;45
4.4.1;4.1 Explicit Drinfeld modules of rank 2;45
4.4.2;4.2 Finding an isogeny;48
4.4.3;4.3 Obtaining a tower;50
5;Correlation-immune Boolean functions for easing counter measures to side-channel attacks;53
5.1;1 Introduction;54
5.2;2 Preliminaries;57
5.2.1;2.1 The combiner model of pseudo-random generator in a stream cipher and correlation-immune functions;57
5.2.2;2.2 Side-channel attacks;61
5.2.3;2.3 Masking counter measure;63
5.3;3 Methods for allowing masking to resist higher order side-channel attacks;65
5.3.1;3.1 Leakage squeezing for first-order masking;65
5.3.2;3.2 Leakage squeezing for second-order masking;67
5.3.3;3.3 Rotating S-box masking;68
5.4;4 New challenges for correlation-immune Boolean functions;70
5.4.1;4.1 Basic facts on CI functions, orthogonal arrays and dual distance of codes;70
5.4.2;4.2 Known constructions of correlation-immune functions;73
5.4.3;4.3 Synthesis of minimal weights of d-CI Boolean functions;77
6;The discrete logarithm problem with auxiliary inputs;83
6.1;1 Introduction;84
6.2;2 Algorithms for the ordinary DLP;85
6.2.1;2.1 Generic algorithms;85
6.2.2;2.2 Nongeneric algorithms;88
6.3;3 The DLPwAI and Cheon’s algorithm;90
6.3.1;3.1 p - 1 cases;91
6.3.2;3.2 Generalized algorithms;92
6.4;4 Polynomials with small value sets;94
6.4.1;4.1 Fast multipoint evaluation in a blackbox manner;94
6.4.2;4.2 An approach using polynomials of small value sets;95
6.5;5 Approach using the rational polynomials: Embedding to elliptic curves;96
6.6;6 Generalized DLPwAI;97
6.6.1;6.1 Representation of a multiplicative subgroup of Z×p-1;97
6.6.2;6.2 A group action on Z*p and polynomial construction;98
6.6.3;6.3 Main result;98
6.7;7 Applications and implications;99
6.7.1;7.1 Strong Diffie–Hellman problem and its variants;99
6.7.2;7.2 Attack on the existing schemes using Cheon’s algorithm;100
6.8;8 Open problems and further work;101
7;Garden of curves with many automorphisms;105
7.1;1 Introduction;105
7.2;2 Notation and background;106
7.3;3 Upper bounds on the size of G depending on g;107
7.4;4 Upper bounds on the size of the p-subgroups of G depending on the p-rank;108
7.5;5 Examples of curves with large automorphism groups;109
7.5.1;5.1 Curves with unitary automorphism group;109
7.5.2;5.2 Curves with Suzuki automorphism group;110
7.5.3;5.3 Curves with Ree automorphism group;111
7.5.4;5.4 The Giulietti–Korchmáros curve;111
7.5.5;5.5 The generalized GK curve;112
7.5.6;5.6 A curve admitting SU(3, p) as an automorphism group;113
7.5.7;5.7 General hyperelliptic curves with a K-automorphism 2-group of order 2g + 2;113
7.5.8;5.8 A curve with genus g = (2h - 1)2 admitting a K-automorphism 2-group of order of order 2(g - 1) + 2h+1 - 2;113
7.5.9;5.9 General bielliptic curves with a dihedral K-automorphism 2-group of order 4(g - 1);114
7.5.10;5.10 A curve of genus g with a semidihedral K-automorphism 2-group of order 2(g - 1);116
7.6;6 Characterizations;117
7.6.1;6.1 Curves with many automorphisms with respect to their genus;117
7.6.2;6.2 Curves with a large nontame automorphism group;118
7.6.3;6.3 Theorem 6.2 and some generalizations of Deligne–Lusztig curves;119
7.6.4;6.4 Group-theoretic characterizations;121
7.7;7 The possibilities for G when the p-rank is 0;122
7.8;8 Large automorphism p-groups in positive p-rank;124
7.8.1;8.1 p = 2;124
7.8.2;8.2 p = 3;128
7.8.3;8.3 p > 3;129
8;Nonlinear shift registers – A survey and challenges;133
8.1;1 Introduction;133
8.2;2 Nonlinear shift registers;135
8.2.1;2.1 The binary de Bruijn graph;136
8.2.2;2.2 The pure cycling register;138
8.2.3;2.3 The complementary cycling register;138
8.2.4;2.4 De Bruijn sequences;138
8.3;3 Mykkeltveit’s proof of Golomb’s conjecture;141
8.4;4 The D-morphism;144
8.5;5 Conjugate pairs in PCR;146
8.6;6 Finite fields and conjugate pairs;147
8.6.1;6.1 Cycle joining and cyclotomy;149
8.7;7 Periodic structure of NLFSRs;151
8.8;8 Conclusions;154
9;Permutations of finite fields and uniform distribution modulo 1;157
9.1;1 Introduction;157
9.2;2 Preliminaries;158
9.3;3 Good and weak families of permutations;162
9.4;4 Existence of good families;163
9.5;5 Permutation polynomials of Carlitz rank 3;164
9.6;6 Bounds for f(Ssp)
;166
9.7;7 Computational results;168
9.8;8 Concluding remarks;169
10;Semifields, relative difference sets, and bent functions;173
10.1;1 Introduction;173
10.2;2 Semifields;174
10.3;3 Relative difference sets;177
10.4;4 Relative difference sets and semifields;179
10.5;5 Planar functions in odd characteristic;183
10.6;6 Planar functions in characteristic 2;184
10.7;7 Component functions of planar functions;185
10.8;8 Concluding remarks and open problems;187
11;NTRU cryptosystem: Recent developments and emerging mathematical problems in finite polynomial rings;191
11.1;1 Introduction;191
11.2;2 Notation and preliminaries;193
11.2.1;2.1 Notation;193
11.2.2;2.2 Probability and algorithms;193
11.2.3;2.3 Rings;194
11.2.4;2.4 Lattices;194
11.3;3 Review of the NTRU cryptosystem;195
11.3.1;3.1 The NTRU construction;195
11.3.2;3.2 Security of NTRU: Computational/statistical problems and known attacks;197
11.4;4 Recent developments in security analysis of NTRU;201
11.4.1;4.1 Overview;201
11.4.2;4.2 Gaussian distributions modulo lattices and Fourier analysis;204
11.4.3;4.3 Statistical hardness of the NTRU decision key cracking problem;207
11.4.4;4.4 Computational hardness of the ciphertext cracking problem;210
11.5;5 Recent developments in applications of NTRU;212
11.5.1;5.1 NTRU-based homomorphic encryption;212
11.5.2;5.2 NTRU-based multilinearmaps;216
11.6;6 Conclusions;219
12;Analog of the Kronecker–Weber theorem in positive characteristic;225
12.1;1 Introduction;225
12.2;2 The classical case;227
12.3;3 A proof of the Kronecker–Weber theorem based on ramification groups;228
12.4;4 Cyclotomic function fields;231
12.5;5 The maximal Abelian extension of k;233
12.6;6 Reciprocity law;235
12.7;7 The proof of David Hayes;236
12.8;8 Witt vectors and the conductor;237
12.8.1;8.1 The conductor;240
12.8.2;8.2 The conductor according to Schmid;240
12.9;9 The Kronecker–Weber–Hayes theorem;241
12.10;10 Final remarks;247
13;Index;251