Nichtlineare Physik in Aufgaben | Buch | 978-3-519-03224-3 | sack.de

Buch, Deutsch, 335 Seiten, Format (B × H): 133 mm x 203 mm, Gewicht: 392 g

Reihe: Teubner Studienbücher Chemie

Nichtlineare Physik in Aufgaben


1994
ISBN: 978-3-519-03224-3
Verlag: Vieweg+Teubner Verlag

Buch, Deutsch, 335 Seiten, Format (B × H): 133 mm x 203 mm, Gewicht: 392 g

Reihe: Teubner Studienbücher Chemie

ISBN: 978-3-519-03224-3
Verlag: Vieweg+Teubner Verlag


Die Untersuchung nichtlinearer Systeme, speziell die Chaosforschung, hat in sehr vielen Lebensbereichen zu vollig neuen Ansatzen gefUhrt. Verhal­ tensweisen komplexer Systeme, die zunachst innerhalb der Physik studiert wurden, werden auf v6llig neue Situationen iibertragen. Hier sei etwa die Wettervorhersage, Verkehrsplanung, die Wirtschaft und das Management genannt. Physikalische Forschung wird hier in einem starken Mafie in­ terdisziplinar wirksam und hat zum Verstandnis sehr komplexer Systeme beigetragen. Jedoch miissen die Grundlagen der Anwendbarkeit der nichtli~ nearen Dynamik fUr solche Gebiete noch besser untersucht werden. Zweifel­ los sind die Untersuchungen komplexer Systeme aus vielen Teilchen, etwa Cluster oder mesoskopische Strukturen, fUr die weitere Forschung in der Physik, der Materialwissenschaft, der Chemie und Biologie von grofier Be­ deutung. Nichtlineare Systeme werden nicht nur bei der Anwendung phy­ sikalischer Phanomene in der Technik, bei der Behandlung der Turbulenz, derPhysik der Atmosphareund anderen eine wichtige Rolle spielen. Auch fUr allgemeine Fragen der Umwelt, der Medizin und der Gesellschaft wer­ den Ergebnisse der Forschung zu dieser Thematik eine wichtige Auswirkung haben. Fundierte Kenntnisse der physikalischen Grundlagen sind eine unabdingba­ re Voraussetzung, um die explosionsartige Entwicklung der Wissenschafts­ gebiete Nichtlineare Dynamik, Chaostheorie, Fraktale Strukturen und Syn­ ergetik zu verfolgen. Dazu eignen sich neben den entsprechenden Lehrbii­ chern insbesondere Aufgabensammlungen. Das eigenstandige Losen physi­ kalischer Problemstellungen vertieft die praktischen Fertigkeiten und schult das Verstandnis fUr nichtlineare Phanomene.

Nichtlineare Physik in Aufgaben jetzt bestellen!

Zielgruppe


Professional/practitioner

Weitere Infos & Material


1 Die nicht lineare Physik.- 1.1 Nichtlineare Dynamik und Chaosforschung.- 1.2 Klassiiikation dynamischer Systeme.- 1.3 Zwei Beispiele.- 2 Das mathematische Pendel.- 2.1 Phasenraumporträt.- 2.2 Dynamik der Bewegungstypen.- 2.3 Wirkungsintegral.- 2.4 Das Doppelpendel.- 3 Das Kettenkarussell.- 3.1 Doppelmuldenpotential.- 3.2 Bifurkationsdiagramm.- 3.3 Bewegungsgleichungen.- 3.4 Gepumptes Kettenkarussell.- 3.5 Übergang ins Chaos.- 4 Feder-Pendel-Systeme.- 4.1 Gekreuzte Federn in der Ebene.- 4.2 Gekreuzte Federn.- 4.3 Elastisches Pendel.- 5 Schwingende Atwood-Maschine.- 5.1 SAM-Bewegungsgleichungen.- 5.2 Äquipotentiallinien.- 5.3 Unbegrenzte Bewegung.- 5.4 Phasenraumdynamik.- 5.5 Integrabilität.- 5.6 Koordinatentransformation.- 5.7 Poincaré-Schnitte.- 5.8 Ziglins Theorem.- 5.9 Heterokline Orbits.- 5.10 Zentralfeldnäherung.- 6 Dynamische Systeme.- 6.1 Van der Pol-Oszillator.- 6.2 Räuber-Beute-Systeme.- 6.3 Der Brüsselator.- 6.4 Das Selkov-Modell.- 6.5 Die Lorenz-Gleichungen.- 6.6 Das Rössler-Modell.- 6.7 3-Sorten-Nahrungskette.- 7 Reaktions-Diffusions-Systeme.- 7.1 Diffusion mit ortsabhängigem Diffusionskonstanten.- 7.2 Stationarität eindimensionaler Reaktions — Diffusions — Systeme.- 7.3 2-Boxen-Brüsselator.- 8 Diskrete Abbildungen.- 8.1 Die logistische Gleichung.- 8.2 Die Spitzdach-Abbildung.- 8.3 Die Standard-Abbildung.- 8.4 Die Henon-Abbildung.- 9 Chaotische Streuung und Billardsysteme.- 9.1 Chaotische Streuung.- 9.2 Stadionbillard.- 9.3 Lennard-Jones-Streuung.- 10 Selbstähnlichkeit und Fraktale.- 10.1 Nichtlinearität 3. Grades.- 10.2 Koch-Kurve.- 10.3 Affine Abbildungen.- 10.4 DLA-Cluster.- 11 Solitonen.- 11.1 Das mathematische Pendel.- 11.2 Periodische und quasiperiodische Bewegungen.- 11.3 Das Frenkel-Kontorova-Modell.- 11.4 DieSinus-Gordon-Gleichung.- 12 Stochastische Prozesse — Mastergleichungsformalismus.- 12.1 Linearer Clusterzerfall.- 12.2 Evolution eines Clusters in einer Box.- 12.3 Nukleation und Wachstum eines Clusters.- 12.4 Stochastischer Brüsselator.- 13 Die bistabile Schlögl-Reaktion.- 13.1 Homogenes Reaktionssystem.- 13.2 Zwei-Boxen-Schlögl-Modell.- 13.3 Schlögl-Modell mit Diffusion.- 13.4 Stochastische Beschreibung.- 14 Simulationsstrategien.- 14.1 Zufallswanderer.- 14.2 Reisender Handelsmann.- 14.3 Reaktions-Diffusions-Automat.- Sachwortverzeichnis.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.