Nguyen / Jiang / Xing | Artificial Intelligence in Radiation Therapy | Buch | 978-3-030-32485-8 | sack.de

Buch, Englisch, Band 11850, 172 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 289 g

Reihe: Lecture Notes in Computer Science

Nguyen / Jiang / Xing

Artificial Intelligence in Radiation Therapy

First International Workshop, AIRT 2019, Held in Conjunction with MICCAI 2019, Shenzhen, China, October 17, 2019, Proceedings
1. Auflage 2019
ISBN: 978-3-030-32485-8
Verlag: Springer International Publishing

First International Workshop, AIRT 2019, Held in Conjunction with MICCAI 2019, Shenzhen, China, October 17, 2019, Proceedings

Buch, Englisch, Band 11850, 172 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 289 g

Reihe: Lecture Notes in Computer Science

ISBN: 978-3-030-32485-8
Verlag: Springer International Publishing


This book constitutes the refereed proceedings of the First International Workshop on Connectomics in Artificial Intelligence in Radiation Therapy, AIRT 2019, held in conjunction with MICCAI 2019 in Shenzhen, China, in October 2019.

The 20 full papers presented were carefully reviewed and selected from 24 submissions. The papers discuss the state of radiation therapy, the state of AI and related technologies, and hope to find a pathway to revolutionizing the field to ultimately improve cancer patient outcome and quality of life.

Nguyen / Jiang / Xing Artificial Intelligence in Radiation Therapy jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


Using Supervised Learning and Guided Monte Carlo Tree Search for Beam Orientation Optimization in Radiation Therapy.- Feasibility of CT-only 3D dose prediction for VMAT prostate plans using deep learning.- Automatically Tracking and Detecting Signi?cant Nodal Mass Shrinkage During Head-and-Neck Radiation Treatment Using Image Saliency.- 4D-CT Deformable Image Registration Using an Unsupervised Deep Convolutional Neural Network.- Toward markerless image-guided radiotherapy using deep learning for prostate cancer.- A Two-Stage Approach for Automated Prostate Lesion Detection and Classification with Mask R-CNN and Weakly Supervised Deep Neural Network.- A Novel Deep Learning Framework for Standardizing the Label of OARs in CT.- Multimodal Volume-Aware Detection and Segmentation for Brain Metastases Radiosurgery.- Voxel-level Radiotherapy Dose Prediction Using Densely Connected Network with Dilated Convolutions.- Online Target Volume Estimation and Prediction From an Interlaced Slice Acquisition - A Manifold Embedding and Learning Approach.- One-dimensional convolutional network for Dosimetry Evaluation at Organs-at-Risk in Esophageal Radiation Treatment Planning.- Unpaired Synthetic Image Generation in Radiology Using GANs.- Deriving lung perfusion directly from CT image using deep convolutional neural network: A preliminary study.- Individualized 3D Dose Distribution Prediction Using Deep Learning.- Deep Generative Model-Driven Multimodal Prostate Segmentation in Radiotherapy.- Dose Distribution Prediction for Optimal Treatment of Modern External Beam Radiation Therapy for Nasopharyngeal Carcinoma.- DeepMCDose: A Deep Learning Method for Efficient Monte Carlo Beamlet Dose Calculation by Predictive Denoising in MR-Guided Radiotherapy.- UC-GAN for MR to CT Image Synthesis.- CBCT-based Synthetic MRI Generation for CBCT-guided Adaptive Radiotherapy.- Cardio-pulmonary Substructure Segmentation of CT images using Convolutional Neural Networks.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.