Nguyen / Dinh Duc Anh / Kozierkiewicz | Computational Collective Intelligence | Buch | 978-3-032-09320-2 | sack.de

Buch, Englisch, 513 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 809 g

Reihe: Lecture Notes in Computer Science

Nguyen / Dinh Duc Anh / Kozierkiewicz

Computational Collective Intelligence

17th International Conference, ICCCI 2025, Ho Chi Minh City, Vietnam, November 12-15, 2025, Proceedings, Part II
Erscheinungsjahr 2025
ISBN: 978-3-032-09320-2
Verlag: Springer

17th International Conference, ICCCI 2025, Ho Chi Minh City, Vietnam, November 12-15, 2025, Proceedings, Part II

Buch, Englisch, 513 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 809 g

Reihe: Lecture Notes in Computer Science

ISBN: 978-3-032-09320-2
Verlag: Springer


This two-set volume LNAI 16138-16139 constitutes the refereed proceedings of the 17th International Conference on Computational Collective Intelligence, ICCCI 2025, held in Ho Chi Minh City, Vietnam, during November 12–15, 2025.

The 67 revised full papers presented in these proceedings were carefully reviewed and selected from 290 submissions. The papers are organized in the following topical sections:

Part I: Collective Intelligence and Collective Decision-Making; Co-operative Strategies for Decision-Making & Optimisation; Natural Language Processing; Knowledge Engineering & Industry 4.0 Applications; Data Mining & Machine Learning.

Part II: Social Networks and Intelligent Systems; Cyber-Security, Blockchain & IoT; Computational Intelligence in Medical Applications; Computational Intelligence for Digital Content Understanding.

Nguyen / Dinh Duc Anh / Kozierkiewicz Computational Collective Intelligence jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


.- Social Networks & Intelligent Systems: From Relevance to Discovery: Trends in Overcoming Information Bubbles.-Enhanced Link Prediction in Social Networks Leveraging Reinforcement Learning and Similarity Algorithms.-Outdoor air quality and health impact: the PANORAMA knowledge graph based approach.-An Integrative Network Modeling Approach for the Interplay of Emotion Contagion, Empathic Responding, and Interpersonal Emotion Regulation for an AI Coach.-A Formal Model for Determining the Influence Between Users in Social Media Using Directed and Weighted Graphs.-Query-Aware Temporal Knowledge Graph Reasoning with Multi-Source Knowledge Based Generation.-Self-Attention based Sequential Recommendation Systems improved with Reviews Topic Modeling in e-Commerce Transactions.- Cyber-Security, Blockchain & IoT: Enhancing Phishing URL Detection with Graph Neural Networks: A Combination of URL and HTML Features.-Enhancing DevSecOps Through Large Language Model Integration: A Pipeline-Centric Approach.-Lightweight Activity Recognition Model Based on Tiny Machine Learning for Embedded Devices.-BeDFL: A Blockchain-enabled Decentralized Federated Learning in a Non-trusted Environment.-A Dual-Layer Defense Mechanism for Dropout Attack in Wireless Link Estimation.-Black-box Two-phase Adversarial Attack: Finding Important Regions and Reducing L2-loss.- Computational Intelligence in Medical Applications: Retinal Blood Vessels Segmentation for ROP Plus Form Diagnosis.-Data imputation for noisy time-series data in healthcare.-Leukemia Detection Based on YOLOv11 with Global and Local Contexts Interaction.-MOSL: Integrating multi-omics and machine learning to predict synthetic lethality in cancer cell lines.-The New Method for Detection of Alzheimer’s Disease.-Enhanced CT Image Reconstruction Using VMD-Based Quaternion Bilateral Filtering.- Computational Intelligence for Digital Content Understanding: Automated Image Recognition Framework.-FaR: Enhancing Multi-Concept Text-to-Image Diffusion via Concept Fusion and Localized Refinement.-LTDAD-Talker: Landmark-guided Talking Face Generation with Temporal Consistency and Detail-Aware Discriminator.-Semi-Supervised Video Action Detection Using a UNet-like Architecture.-Enhancing Tracking-by-Transformer by using State Transition Prediction.-Temporal Interpolation of Variable-sized LIDAR Point Clouds.-WSS-CL: Weight Saliency Soft-Guided Contrastive Learning for Efficient Machine Unlearning Image Classification.-CLM: Momentum and Torque Conservation for Robust Continual Learning.-Learning action strategies in the Wumpus World with DQN.-Can Frequency Filtering Approximate CNNs for Enhancing Segment Anything?.-R&D: Balancing Reliability and Diversity in Synthetic Data Augmentation for Semantic Segmentation.-Deep Learning-Based Source Printer Identification from Microscopic Ink Dots Using Morphology-Based Augmentation.-An algorithm to remove motion-based artifacts in MRI data based on deep learning methods.-Imbalanced Data Problem in INTERCO Detection.-Collaborative Multimodal Learning for Human-Human Interaction Recognition in Videos.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.