Buch, Deutsch, Band 64, 394 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 616 g
Buch, Deutsch, Band 64, 394 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 616 g
Reihe: Grundlehren der mathematischen Wissenschaften
ISBN: 978-3-642-88562-4
Verlag: Springer
1. Die Theorie der Uniformisierung befaßt sich mit der Frage, wie eine mehrdeutige Relation (x, y) zwischen den Objekten x und y von zwei Mengen R" bzw. R eindeutig dargestellt (uniformisiert) werden y kann. Unter dem Uniformisierungsproblem im eigentlichen Sinn, so wie es auch in der vorliegenden Arbeit zur Darstellung kommen wird, versteht man die enger und präzise abgegrenzte, freilich immer noch sehr all gemeine Aufgabe, eine mehrdeutige analytische Relation (x, y) zwischen den Punkten x und y von zwei komplexen Zahlenebenen oder allge meiner von zwei "RIEMANNschen Flächen" R" und R zu uniformisieren, y indem für die gegebene Relation (x, y) eine "Parameterdarstellung" x=x(t), y=y(t) (1 ) gesucht wird, durch welche die Gesamtheit der durch die Relation (x, y) gebundenen Punktepaare x, y den Punkten t einer dritten RIEMANNschen Fläche R eindeutig und analytisch zugeordnet werden. Besonderes t Interesse bietet hierbei der Fall, wo R "schlichtartig" ist, d. h. wo diese t Fläche als Teilgebiet der Ebene der komplexen Zahlen t dargestellt werden kann. Sind dazu auch die Flächen R" und R die komplexe x· y und y-Ebene, so ist die Relation (x, y) ein sog. analytisches Gebilde und es gilt also, dieses Gebilde durch zwei eindeutige analytische Funk tionen x = x (t), y = y (t) nicht nur im kleinen (lokal), sondern im großen (global) zu uniformisieren. 2.
Zielgruppe
Research
Autoren/Hrsg.
Weitere Infos & Material
Erstes Kapitel. Algebraische Funktionen.- § 1. Algebraische Funktionselemente.- § 2. Konstruktion der algebraischen Funktion aus ihren Elementen.- Zweites Kapitel. Begriff der Riemannschen Fläche.- § 1. Umgebungsraum, Mannigfaltigkeit, Riemannsche Fläche.- § 2. Homologiegruppen.- § 3. Fundamentalgruppe.- § 4. Uberlagerungsflächen.- § 5. Triangulierung einer Mannigfaltigkeit.- Drittes Kapitel. Funktionentheoretische Grundsätze.- § 1. Funktionen, Differentiale.- § 2. Funktionen und Kovarianten auf geschlossenen Flächen.- § 3. Analytische Fortsetzung.- § 4. Das Maximum- und Minimumprinzip.- § 5. Integralsätze.- Viertes Kapitel. Existenzsätze.- § 1. Das alternierende Verfahren von Schwarz.- § 2. Lösung der Randwertaufgabe für Kreisbereiche.- § 3. Abzählbarkeitsaxiom.- § 4. Lösungen mit vorgeschriebenen Singularitäten.- § 5. Geschlossene Flächen.- § 6. Lösung der Randwertaufgaben für beliebige Jordanbereiche.- Fünftes Kapitel. Geschlossene Riemannsche Flächen.- § 1. Riemannsche Flächen in Polygondarstellung.- § 2. Differentiale erster Gattung.- § 3. Differentiale zweiter und dritter Gattung.- § 4. Rationale Funktionen.- § 5. Integrale algebraischer Funktionen.- Sechstes Kapitel. Der Riemannsche Abbildungssatz.- § 1. Vorbereitende Bemerkungen.- § 2. Greensche Funktion einer offenen Fläche.- § 3. Einfach zusammenhängende Flächen vom hyperbolischen Typ.- § 4. Der parabolische Fall.- Siebentes Kapitel. Gruppen von linearen Transformationen.- § 1. Lineare Transformationen.- § 2. Diskontinuierliche Gruppen von konformen Selbstabbildungen des Einheitskreises.- § 3. Normalform des Fundamentalpolygons.- § 4. Das metrische Fundamentalpolygon.- § 5. Konforme Selbstabbildungen der Zahlenebene.- Achtes Kapitel. Uniformisierung.- § 1.Normalform Riemannscher Flächen.- § 2 Fortsetzbarkeit einer Riemannschen Fläche.- § 3. Konforme Klassen.- § 4. Uniformisierung.- Neuntes Kapitel. Schlichtartige Flächen.- § 1. Vorbereitende Bemerkungen.- § 2. Berandete schlichtartige Flächen.- § 3. Extremalsätze über Schlitzabbildungen.- § 4. Abbildung offener schlichtartiger Flächen.- § 5. Extremaleigenschaften der Spanne.- § 6. Weitere normierte Schlitzabbildungen von Flächen mit positiver Spanne.- § 7. Anwendung auf die Uniformisierung.- Zehntes Kapitel. Offene Riemannsche Flächen.- § 1. Aufbau einer offenen Fläche.- § 2. Greensche Funktion, Kapazität, harmonisches Ma13.- § 3. Randwertprobleme für nichtkompakte Teilflächen.- § 4. Normierte Potentiale mit vorgeschriebenen Singularitäten.- § 5. Automorphe Potentiale.- § 6. Abelsche Integrale erster Gattung.- § 7. Unterräume von quadratisch integrablen Differentialen.- § 8. Besondere Flächenklassen.- § 9. Metrische Kriterien.- Register.